Ammonia Derived from Glutaminolysis Is a Diffusible Regulator of Autophagy

Center for Integrative Biology and Biotherapeutics, Pfizer, Pearl River, NY 10965, USA.
Science Signaling (Impact Factor: 7.65). 04/2010; 3(119):ra31. DOI: 10.1126/scisignal.2000911
Source: PubMed

ABSTRACT Autophagy is a tightly regulated catabolic process that plays key roles in normal cellular homeostasis and survival during periods of extracellular nutrient limitation and stress. The environmental signals that regulate autophagic activity are only partially understood. Here, we report a direct link between glutamine (Gln) metabolism and autophagic activity in both transformed and nontransformed human cells. Cells cultured for more than 2 days in Gln-containing medium showed increases in autophagy that were not attributable to nutrient depletion or to inhibition of mammalian target of rapamycin. Conditioned medium from these cells contained a volatile factor that triggered autophagy in secondary cell cultures. We identified this factor as ammonia derived from the deamination of Gln by glutaminolysis. Gln-dependent ammonia production supported basal autophagy and protected cells from tumor necrosis factor-alpha (TNF-alpha)-induced cell death. Thus, Gln metabolism not only fuels cell growth but also generates an autocrine- and paracrine-acting regulator of autophagic flux in proliferating cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Methotrexate has been in use as an anti-cancer agent for over 60 years. Though inhibition of dihydrofolate reductase is its best known mechanisms of action, its non-dihydrofolate reductase dependent mechanisms disrupt metabolic pathways resulting in a depletion of NAD(P)H and increasing oxidative stress. These mechanisms highlight a novel dependence of cancer cells on their metabolic abnormalities to buffer oxidative stress and chemotherapeutic agents interfere with these cellular abilities. Mitochondria appear to play a significant role in maintaining cancer cell viability and alterations in metabolism seen in cancer cells aid this mitochondrial ability. Further research is needed to understand the effects of other chemotherapeutic agents on these pathways.
    02/2015; 3. DOI:10.1016/j.bbacli.2015.01.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a catabolic process mediated by incorporation of cellular material into cytosolic membrane vesicles for lysosomal degradation. It is crucial for maintaining cell viability and homeostasis in response to numerous stressful conditions. In this Review, the role of autophagy in both normal biology and disease is discussed. Emphasis is given to the interplay of autophagy with nutrient signaling through the ULK1 autophagy pre-initiation complex. Furthermore, related cellular processes utilizing components of the canonical autophagy pathway are discussed due to their potential roles in nutrient scavenging. Finally, the role of autophagy in cancer and its potential as a cancer therapeutic target are considered.
    Journal of Clinical Investigation 01/2015; 125(1):47-54. DOI:10.1172/JCI73942 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proper functioning of the cell depends on preserving the cellular genome. In yeast cells, a limited number of genes are located on mitochondrial DNA. Although the mechanisms underlying nuclear genome maintenance are well understood, much less is known about the mechanisms that ensure mitochondrial genome stability. Mitochondria influence the stability of the nuclear genome and vice versa. Little is known about the two-way communication and mutual influence of the nuclear and mitochondrial genomes. Although the mitochondrial genome replicates independently of the nuclear genome and is organized by a distinct set of mitochondrial nucleoid proteins, nearly all genome stability mechanisms responsible for maintaining the nuclear genome, such as mismatch repair, base excision repair, and double-strand break repair via homologous recombination or the nonhomologous end-joining pathway, also act to protect mitochondrial DNA. In addition to mitochondria-specific DNA polymerase γ, the polymerases α, η, ζ, and Rev1 have been found in this organelle. A nuclear genome instability phenotype results from a failure of various mitochondrial functions, such as an electron transport chain activity breakdown leading to a decrease in ATP production, a reduction in the mitochondrial membrane potential (ΔΨ) and a block in nucleotide and amino acid biosynthesis. The loss of ΔΨ inhibits the production of iron-sulfur prosthetic groups, which impairs the assembly of Fe-S proteins, including those that mediate DNA transactions; disturbs iron homeostasis; leads to oxidative stress; and perturbs wobble tRNA modification and ribosome assembly, thereby affecting translation and leading to proteotoxic stress. In this review, we present the current knowledge of the mechanisms that govern mitochondrial genome maintenance and demonstrate ways in which the impairment of mitochondrial function can affect nuclear genome stability. Copyright © 2015. Published by Elsevier Inc.
    Free Radical Biology and Medicine 01/2015; 82. DOI:10.1016/j.freeradbiomed.2015.01.013 · 5.71 Impact Factor