Memantine Normalizes Several Phenotypic Features in the Ts65Dn Mouse Model of Down Syndrome

Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain.
Journal of Alzheimer's disease: JAD (Impact Factor: 3.61). 01/2010; 21(1):277-90. DOI: 10.3233/JAD-2010-100240
Source: PubMed

ABSTRACT Ts65Dn (TS) mice exhibit several phenotypic characteristics of human Down syndrome, including an increased brain expression of amyloid-beta protein precursor (AbetaPP) and cognitive disturbances. Aberrant N-methyl-D-aspartate (NMDA) receptor signaling has been suspected in TS mice, due to an impaired generation of hippocampal long-term potentiation (LTP). Memantine, an uncompetitive NMDA receptor antagonist approved for the treatment of moderate to severe Alzheimer's disease, is known to normalize LTP and improve cognition in transgenic mice with high brain levels of AbetaPP and amyloid-beta protein. It has recently been demonstrated that acute injections of memantine rescue performance deficits of TS mice on a fear conditioning test. Here we show that oral treatment of aged TS mice with a clinically relevant dose of memantine (30 mg/kg/day for 9 weeks) improved spatial learning in the water maze task and slightly reduced brain AbetaPP levels. We also found that TS mice exhibited a significantly reduced granule cell count and vesicular glutamate transporter-1 (VGLUT1) labeling compared to disomic control mice. After memantine treatment, the levels of hippocampal VGLUT1 were significantly increased, reaching the levels observed in vehicle treated-control animals. Memantine did not significantly affect granule cell density. These data indicate that memantine may normalize several phenotypic abnormalities in TS mice, many of which--such as impaired cognition--are also associated with Down syndrome and Alzheimer's disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Down syndrome (DS) is caused by the triplication of human chromosome 21 (HSA21) and is the most common genetic cause of intellectual disability, with individuals having deficits in cognitive function including hippocampal learning and memory and neurodegeneration of cholinergic basal forebrain neurons, a pathological hallmark of Alzheimer's disease (AD). To date, the molecular underpinnings driving this pathology have not been elucidated. The Ts65Dn mouse is a segmental trisomy model of DS and like DS/AD pathology, displays age-related cognitive dysfunction and basal forebrain cholinergic neuron (BFCN) degeneration. To determine molecular and cellular changes important for elucidating mechanisms of neurodegeneration in DS/AD pathology, expression profiling studies were performed. Molecular fingerprinting of homogeneous populations of Cornu Ammonis 1 (CA1) pyramidal neurons was performed via laser capture microdissection followed by Terminal Continuation RNA amplification combined with custom-designed microarray analysis and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting. Significant alterations were observed within CA1 pyramidal neurons of aged Ts65Dn mice compared to normal disomic (2N) littermates, notably in excitatory and inhibitory neurotransmission receptor families and neurotrophins, including brain-derived neurotrophic factor as well as several cognate neurotrophin receptors. Examining gene and protein expression levels after the onset of BFCN degeneration elucidated transcriptional and translational changes in neurons within a vulnerable circuit that may cause the AD-like pathology seen in DS as these individuals age, and provide rational targets for therapeutic interventions.
    Brain Structure and Function 07/2014; DOI:10.1007/s00429-014-0839-0 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Down syndrome (DS) is caused by an extra copy of human chromosome 21 (Hsa21). Although it is the most common genetic cause of intellectual disability (ID), there are, as yet, no effective pharmacotherapies. The Ts65Dn mouse model of DS is trisomic for orthologs of ∼55% of Hsa21 classical protein coding genes. These mice display many features relevant to those seen in DS, including deficits in learning and memory (L/M) tasks requiring a functional hippocampus. Recently, the N-methyl-D-aspartate (NMDA) receptor antagonist, memantine, was shown to rescue performance of the Ts65Dn in several L/M tasks. These studies, however, have not been accompanied by molecular analyses. In previous work, we described changes in protein expression induced in hippocampus and cortex in control mice after exposure to context fear conditioning (CFC), with and without memantine treatment. Here, we extend this analysis to Ts65Dn mice, measuring levels of 85 proteins/protein modifications, including components of MAP kinase and MTOR pathways, and subunits of NMDA receptors, in cortex and hippocampus of Ts65Dn mice after failed learning in CFC and after learning was rescued by memantine. We show that, compared with wild type littermate controls, (i) of the dynamic responses seen in control mice in normal learning, >40% also occur in Ts65Dn in failed learning or are compensated by baseline abnormalities, and thus are considered necessary but not sufficient for successful learning, and (ii) treatment with memantine does not in general normalize the initial protein levels but instead induces direct and indirect responses in approximately half the proteins measured and results in normalization of the endpoint protein levels. Together, these datasets provide a first view of the complexities associated with pharmacological rescue of learning in the Ts65Dn. Extending such studies to additional drugs and mouse models of DS will aid in identifying pharmacotherapies for effective clinical trials.
    PLoS ONE 10(3):e0119491. DOI:10.1371/journal.pone.0119491 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Down syndrome (DS), also known as trisomy 21, is the most common genetic cause of intellectual disability (ID). Although ID can be mild, the average intelligence quotient is in the range of 40-50. All individuals with DS will also develop the neuropathology of Alzheimer's disease (AD) by the age of 30-40 years, and approximately half will display an AD-like dementia by the age of 60 years. DS is caused by an extra copy of the long arm of human chromosome 21 (Hsa21) and the consequent elevated levels of expression, due to dosage, of trisomic genes. Despite a worldwide incidence of one in 700-1,000 live births, there are currently no pharmacological treatments available for ID or AD in DS. However, over the last several years, very promising results have been obtained with a mouse model of DS, the Ts65Dn. A diverse array of drugs has been shown to rescue, or partially rescue, DS-relevant deficits in learning and memory and abnormalities in cellular and electrophysiological features seen in the Ts65Dn. These results suggest that some level of amelioration or prevention of cognitive deficits in people with DS may be possible. Here, we review information from the preclinical evaluations in the Ts65Dn, how drugs were selected, how efficacy was judged, and how outcomes differ, or not, among studies. We also summarize the current state of human clinical trials for ID and AD in DS. Lastly, we describe the genetic limitations of the Ts65Dn as a model of DS, and in the preclinical testing of pharmacotherapeutics, and suggest additional targets to be considered for potential pharmacotherapies.
    Drug Design, Development and Therapy 01/2015; 9:103-125. DOI:10.2147/DDDT.S51476 · 3.03 Impact Factor