Article

Unique multipotent cells in adult human mesenchymal cell populations.

Department of Stem Cell Biology and Histology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2010; 107(19):8639-43. DOI: 10.1073/pnas.0911647107
Source: PubMed

ABSTRACT We found adult human stem cells that can generate, from a single cell, cells with the characteristics of the three germ layers. The cells are stress-tolerant and can be isolated from cultured skin fibroblasts or bone marrow stromal cells, or directly from bone marrow aspirates. These cells can self-renew; form characteristic cell clusters in suspension culture that express a set of genes associated with pluripotency; and can differentiate into endodermal, ectodermal, and mesodermal cells both in vitro and in vivo. When transplanted into immunodeficient mice by local or i.v. injection, the cells integrated into damaged skin, muscle, or liver and differentiated into cytokeratin 14-, dystrophin-, or albumin-positive cells in the respective tissues. Furthermore, they can be efficiently isolated as SSEA-3(+) cells. Unlike authentic ES cells, their proliferation activity is not very high and they do not form teratomas in immunodeficient mouse testes. Thus, nontumorigenic stem cells with the ability to generate the multiple cell types of the three germ layers can be obtained through easily accessible adult human mesenchymal cells without introducing exogenous genes. These unique cells will be beneficial for cell-based therapy and biomedical research.

0 Followers
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regenerative medicine for Parkinson's disease (PD) is expected to develop dramatically with the advancement of biotechnology as represented by induced pluripotent stem cells. Existing therapeutic strategy for PD consists of medication using L-DOPA, surgery such as deep brain stimulation and rehabilitation. Current treatment cannot stop the progression of the disease, although there is definite therapeutic effect. True neurorestoration is strongly desired by regenerative medicine. This review article describes the historical development of regenerative medicine for PD, with a focus on fetal nigral cell transplantation and glial cell line-derived neurotrophic factor infusion. Subsequently, the current status of regenerative medicine for PD in terms of cell therapy and gene therapy are reviewed. In the end, the future direction to realize regenerative medicine for PD is discussed.
    Neurologia medico-chirurgica 02/2015; 55(2):113-23. DOI:10.2176/nmc.ra.2014-0264 · 0.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow stromal cells (BMSCs) are heterogeneous and their therapeutic effect is pleiotropic. Multilineage-differentiating stress enduring (Muse) cells are recently identified to comprise several percentages of BMSCs, being able to differentiate into triploblastic lineages including neuronal cells and act as tissue repair cells. This study was aimed to clarify how Muse and non-Muse cells in BMSCs contribute to functional recovery after ischemic stroke. Human BMSCs were separated into stage specific embryonic antigen-3-positive Muse cells and -negative non-Muse cells. Immunodeficient mice were subjected to permanent middle cerebral artery occlusion and received transplantation of vehicle, Muse, non-Muse or BMSCs (2.5×104 cells) into the ipsilateral striatum 7 days later. Motor function recovery in BMSC and non-Muse groups became apparent at 21 days after transplantation, but reached the plateau thereafter. In Muse group, functional recovery was not observed for up to 28 days post-transplantation, but became apparent at 35 days post-transplantation. On immunohistochemistry, only Muse cells were integrated into peri-infarct cortex and differentiate into Tuj-1- and NeuN-expressing cells, while negligible number of BMSCs and non-Muse cells remained in the peri-infarct area at 42 days post-transplantation. These findings strongly suggest that Muse cells and non-Muse cells may contribute differently to tissue regeneration and functional recovery. Muse cells may be more responsible for replacement of the lost neurons through their integration into the peri-infarct cortex and spontaneous differentiation into neuronal marker-positive cells. Non-Muse cells do not remain in the host brain and may exhibit trophic effects rather than cell replacement.
    PLoS ONE 03/2015; 10(3):e0116009. DOI:10.1371/journal.pone.0116009 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The claimed human induced pluripotent stem cells (iPSCs) are not equivalent to human embryonic or adult stem cells. These should be redefined as induced pluripotent stem cell-like cells.
    01/2015; 29(1):1-2. DOI:10.7555/JBR.29.20140166

Full-text (2 Sources)

Download
9 Downloads
Available from
Oct 9, 2014