Article

Genetic evidence for the involvement of lipid metabolism in Alzheimer's disease.

MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Heath Park, Cardiff University, CF14 4XN, UK.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 08/2010; 1801(8):754-61. DOI: 10.1016/j.bbalip.2010.04.005
Source: PubMed

ABSTRACT Alzheimer's disease (AD) is the most common cause of dementia in the elderly and presents a great burden to sufferers and to society. The genetics of rare Mendelian forms of AD have been central to our understanding of AD pathogenesis for the past twenty years and now the genetics of the common form of the disease in the elderly is beginning to be unravelled by genome-wide association studies. Four new genes for common AD have been revealed in the past year, CLU, CR1, PICALM and BIN1. Their possible involvement in lipid metabolism and how that relates to AD is discussed here.

0 Bookmarks
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although widely explored, the pathogenesis of Alzheimer's disease (AD) has yet to be cleared. Over the past twenty years the so call amyloid cascade hypothesis represented the main research paradigm in AD pathogenesis. In spite of its large consensus, the proposed role of β-amyloid (Aβ) remain to be elucidated. Many evidences are starting to cast doubt on Aβ as the primary causative factor in AD. For instance, Aβ is deposited in the brain following many different kinds of injury. Also, concentration of Aβ needed to induce toxicity in vitro are never reached in vivo. In this review we propose an amyloid-independent interpretation of several AD pathogenic features, such as synaptic plasticity, endo-lysosomal trafficking, cell cycle regulation and neuronal survival.
    FEBS letters 01/2014; · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence has indicated that a group of plant-derived compounds known as flavonoids may exert particularly powerful actions on mammalian cognition and may reverse age-related declines in memory and learning. In addition, growing evidence is also suggestive that flavonoids may delay the development of Alzheimer's disease-like pathology, suggestive of potential dietary strategies in dementia. Although these low-molecular-weight phytochemicals are absorbed to only a limited degree, they have been found to counteract age-related cognitive declines possibly via their ability to interact with the cellular and molecular architecture of the brain responsible for memory. However, the majority of the research has been carried out at rather supraphysiological concentrations and only a few studies have investigated the neuromodulatory effects of physiologically attainable flavonoid concentrations. This review will summarize the evidence for the effects of flavonoids and their metabolites in age-related cognitive decline and Alzheimer's disease. Mechanisms of actions will be discussed and include those activating signalling pathways critical in controlling synaptic plasticity, reducing neuroinflammation and inducing vascular effects potentially capable of causing new nerve cell growth in the hippocampus. Altogether, these processes are known to be important in maintaining optimal neuronal function, to limit neurodegeneration and to prevent or reverse age-dependent deteriorations in cognitive performance. © 2013 Society of Chemical Industry.
    Journal of the Science of Food and Agriculture 11/2013; · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several neurological disorders are associated with the aggregation of aberrant proteins, often localized in intracellular organelles such as the endoplasmic reticulum. Here we study protein aggregation kinetics by mean-field reactions and three dimensional Monte carlo simulations of diffusion-limited aggregation of linear polymers in a confined space, representing the endoplasmic reticulum. By tuning the rates of protein production and degradation, we show that the system undergoes a non-equilibrium phase transition from a physiological phase with little or no polymer accumulation to a pathological phase characterized by persistent polymerization. A combination of external factors accumulating during the lifetime of a patient can thus slightly modify the phase transition control parameters, tipping the balance from a long symptomless lag phase to an accelerated pathological development. The model can be successfully used to interpret experimental data on amyloid-β clearance from the central nervous system.
    Nature Communications 01/2014; 5:3620. · 10.74 Impact Factor