c-Abl, Lamellipodin, and Ena/VASP Proteins Cooperate in Dorsal Ruffling of Fibroblasts and Axonal Morphogenesis

Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
Current biology: CB (Impact Factor: 9.92). 05/2010; 20(9):783-91. DOI: 10.1016/j.cub.2010.03.048
Source: PubMed

ABSTRACT Tight regulation of cell motility is essential for many physiological processes, such as formation of a functional nervous system and wound healing. Drosophila Abl negatively regulates the actin cytoskeleton effector protein Ena during neuronal development in flies, and it has been postulated that this may occur through an unknown intermediary. Lamellipodin (Lpd) regulates cell motility and recruits Ena/VASP proteins (Ena, Mena, VASP, EVL) to the leading edge of cells. However, the regulation of this recruitment has remained unsolved.
Here we show that Lpd is a substrate of Abl kinases and binds to the Abl SH2 domain. Phosphorylation of Lpd positively regulates the interaction between Lpd and Ena/VASP proteins. Consistently, efficient recruitment of Mena and EVL to Lpd at the leading edge requires Abl kinases. Furthermore, transient Lpd phosphorylation by Abl kinases upon netrin-1 stimulation of primary cortical neurons positively correlates with an increase in Lpd-Mena coprecipitation. Lpd is also transiently phosphorylated by Abl kinases upon platelet-derived growth factor (PDGF) stimulation, regulates PDGF-induced dorsal ruffling of fibroblasts and axonal morphogenesis, and cooperates with c-Abl in an Ena/VASP-dependent manner.
Our findings suggest that Abl kinases positively regulate Lpd-Ena/VASP interaction, Ena/VASP recruitment to Lpd at the leading edge, and Lpd-Ena/VASP function in axonal morphogenesis and in PDGF-induced dorsal ruffling. Our data do not support the suggested negative regulatory role of Abl for Ena. Instead, we propose that Lpd is the hitherto unknown intermediary between Abl and Ena/VASP proteins.

Download full-text


Available from: Matthias Krause, Jul 20, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MIG-10, RIAM and Lamellipodin (Lpd) are the founding members of the MRL family of multi-adaptor molecules. These proteins have common domain structures but display distinct functions in cell migration and adhesion, signaling, and in cell growth. The binding of RIAM with active Rap1 and with talin provides these MRL molecules with important regulatory roles on integrin-mediated cell adhesion and migration. Furthermore, RIAM and Lpd can regulate actin dynamics through their binding to actin regulatory Ena/VASP proteins. Recent data generated with the Drosophila MRL ortholog called Pico and with RIAM in melanoma cells indicate that these proteins can also regulate cell growth. As MRL proteins represent a relatively new family, many questions on their structure-function relationships remain unanswered, including regulation of their expression, post-translational modifications, new interactions, involvement in signaling and their knockout mice phenotype.
    European journal of cell biology 05/2012; 91(11-12):861-8. DOI:10.1016/j.ejcb.2012.03.001 · 3.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Actin is the essential force-generating component of the microfilament system, which powers numerous motile processes in eukaryotic cells and undergoes dynamic remodeling in response to different internal and external signaling. The ability of actin to polymerize into asymmetric filaments is the inherent property behind the site-directed force-generating capacity that operates during various intracellular movements and in surface protrusions. Not surprisingly, a broad variety of signaling pathways and components are involved in controlling and coordinating the activities of the actin microfilament system in a myriad of different interactions. The characterization of these processes has stimulated cell biologists for decades and has, as a consequence, resulted in a huge body of data. The purpose here is to present a cellular perspective on recent advances in our understanding of the microfilament system with respect to actin polymerization, filament structure and specific folding requirements.
    Protoplasma 04/2012; 249(4):1001-15. DOI:10.1007/s00709-012-0403-9 · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.
    Cold Spring Harbor perspectives in biology 11/2010; 3(3). DOI:10.1101/cshperspect.a001800 · 8.23 Impact Factor