Altered phospholipid transfer protein gene expression and serum lipid profile by topotecan

Department of Medicine, The University of Toledo, College of Medicine, Toledo, OH, United States.
Biochemical pharmacology (Impact Factor: 5.01). 04/2010; 80(3):362-9. DOI: 10.1016/j.bcp.2010.04.015
Source: PubMed


Camptothecin (CPT) and its structural analogues including topotecan and irinotecan, are inhibitors of topoisomerase I. These drugs are clinically active against a broad spectrum of cancers. To understand the genesis of chemotherapeutic resistance to the CPT family of anticancer drugs, we examined by gene expression profiling the pharmacological response to topotecan in the human hepatoma HepG2 cells and found a striking induction of the phospholipid transfer protein (PLTP) gene expression by topotecan. We showed that activation of PLTP gene expression is specific to CPT and its analogues including specific enantiomers that inhibit topoisomerase I. PLTP-mediated lipid transfer to high-density lipoprotein (HDL) is thought to be important for shuttling and redistribution of lipids between lipoproteins, which are normally returned to the liver for metabolism via the reverse cholesterol transport pathway. Hence, we asked whether elevated PLTP levels might increase the transfer of drugs into HDL. We observed that CPT was not accumulated in HDL and other lipoproteins. In addition, topotecan treatment in mice caused a marked reduction in serum HDL that was accompanied by an increase in triglyceride and cholesterol levels. These results showed that PLTP does not mediate the transfer of topoisomerase I inhibitors to serum lipoproteins. However, elevated serum PLTP levels following treatment with topoisomerase I inhibitors in cancer patients may serve as a biomarker for monitoring the development of hypertriglyceridemia and acute pancreatitis.

Download full-text


Available from: Rudel Saunders, Apr 09, 2014
16 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The camptothecins are among the most promising antitumor agents endowed with a unique mechanism of action, because they act through inhibition of DNA topoisomerase I, an enzyme involved in regulating critical cellular functions including DNA replication, transcription and recombination. On the basis of the pharmacological interest of camptothecins in cancer chemotherapy, medicinal chemistry has played a crucial role in the development of novel analogs, and recently some compounds have emerged as promising agents for clinical evaluation. A major limitation to the clinical efficacy of camptothecin-containing therapies is represented by drug resistance. As with other cytotoxic drugs, clinical resistance to camptothecins may be a multifactorial phenomenon likely involving pharmacological and tumor-related factors. An additional problem in understanding clinically relevant resistance mechanisms is the observation that preclinical cell/tumor models may be not adequately predictive of clinical resistance. Here, we review the mechanisms of cell sensitivity/resistance to camptothecins and current approaches to overcome specific mechanisms, either by chemical modifications or by combination with modulating agents. In particular, the realization that most camptothecins are substrates for ATP binding cassette transporters has stimulated efforts in molecular design of novel non-cross-resistant analogs. Finally, a better understanding of the mechanism of cell response at a cellular level could help in defining new strategies to overcome resistance as well as chemical features required for efficacy.
    Current Medicinal Chemistry 02/2006; 13(27):3291-305. DOI:10.2174/092986706778773121 · 3.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasma phospholipid transfer protein (PLTP) is a lipid transfer glycoprotein that binds to and transfers a number of amphipathic compounds. In earlier studies, the attention of the scientific community focused on the positive role of PLTP in high-density lipoprotein (HDL) metabolism. However, this potentially anti-atherogenic role of PLTP has been challenged recently by another picture: PLTP arose as a pro-atherogenic factor through its ability to increase the production of apolipoprotein B-containing lipoproteins, to decrease their antioxidative protection and to trigger inflammation. In humans, PLTP has mostly been studied in patients with cardiometabolic disorders. Both PLTP and related cholesteryl ester transfer protein (CETP) are secreted proteins, and adipose tissue is an important contributor to the systemic pools of these two proteins. Coincidently, high levels of PLTP and CETP have been found in the plasma of obese patients. PLTP activity and mass have been reported to be abnormally elevated in type 2 diabetes mellitus (T2DM) and insulin-resistant states, and this elevation is frequently associated with hypertriglyceridemia and obesity. This review article presents the state of knowledge on the implication of PLTP in lipoprotein metabolism, on its atherogenic potential, and the complexity of its implication in obesity, insulin resistance and T2DM.
    Obesity Reviews 05/2009; 10(4):403-11. DOI:10.1111/j.1467-789X.2009.00586.x · 8.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulation of phospholipase D1 (PLD1), which has been shown to be activated by protein kinase C (PKC) alpha, was investigated in the human melanoma cell lines. In G361 cell line, which lacks PKCalpha, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced PLD activation was potentiated by introducing PKCalpha by the adenovirus vector. The kinase-negative PKCalpha elevated TPA-induced PLD activity less significantly than the wild type. A PKC specific inhibitor GF109203X lowered PLD activation in the cells expressing PKCalpha, but did not prevent PLD potentiation induced by the kinase-negative PKCalpha. Expression of PKCbetaII and the kinase-negative PKCbetaII enhanced TPA-stimulated PLD activity moderately in MeWo cell line, in which PKCbetaII is absent. Furthermore, the TPA treatment increased the association of PKCalpha, PKCbetaII, and their kinase-negative mutants with PLD1 in melanoma cells. These results indicate that PLD1 is dually regulated through phosphorylation as well as through the protein-protein interaction by PKCalpha, and probably by PKCbetaII, in vivo.
    Biochemical and Biophysical Research Communications 07/2002; 294(5):1109-13. DOI:10.1016/S0006-291X(02)00614-9 · 2.30 Impact Factor
Show more