Article

Wireless Instantaneous Neurotransmitter Concentration System: electrochemical monitoring of serotonin using fast-scan cyclic voltammetry--a proof-of-principle study.

Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota 55905, USA.
Journal of Neurosurgery (Impact Factor: 3.15). 04/2010; 113(3):656-65. DOI: 10.3171/2010.3.JNS091627
Source: PubMed

ABSTRACT The authors previously reported the development of the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for measuring dopamine and suggested that this technology may be useful for evaluating deep brain stimulation-related neuromodulatory effects on neurotransmitter systems. The WINCS supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially resolved neurotransmitter measurements. The FSCV parameters used to establish WINCS dopamine measurements are not suitable for serotonin, a neurotransmitter implicated in depression, because they lead to CFM fouling and a loss of sensitivity. Here, the authors incorporate into WINCS a previously described N-shaped waveform applied at a high scan rate to establish wireless serotonin monitoring.
Optimized for the detection of serotonin, FSCV consisted of an N-shaped waveform scanned linearly from a resting potential of +0.2 to +1.0 V, then to -0.1 V and back to +0.2 V, at a rate of 1000 V/second. Proof-of-principle tests included flow injection analysis and electrically evoked serotonin release in the dorsal raphe nucleus of rat brain slices.
Flow cell injection analysis demonstrated that the N waveform, applied at a scan rate of 1000 V/second, significantly reduced serotonin fouling of the CFM, relative to that observed with FSCV parameters for dopamine. In brain slices, WINCS reliably detected subsecond serotonin release in the dorsal raphe nucleus evoked by local high-frequency stimulation.
The authors found that WINCS supported high-fidelity wireless serotonin monitoring by FSCV at a CFM. In the future such measurements of serotonin in large animal models and in humans may help to establish the mechanism of deep brain stimulation for psychiatric disease.

0 Bookmarks
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ratiometric MRI sensors consist of paramagnetic cores and pH-sensitive polymer shells. The core-shell nanostructure enables the coexistence of two incompatible NMR relaxation properties in one particle. The sensors show pH sensitivity in transverse relaxivity (r2 ), but not in longitudinal relaxivity (r1 ). Quantitative pH imaging is achieved by measuring the r2 /r1 value with a clinical 3 T MRI scanner.
    Advanced Materials 01/2014; · 14.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Object Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS "smart" device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS). Methods To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between -0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of -0.4 V between scans. Results By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine release that was time-locked to stimulation and increased progressively with stimulation frequency. Conclusions Here, the authors report a series of proof-of-principle tests in the rat brain demonstrating MINCS to be a reliable and flexible stimulation device that, when used in conjunction with WINCS, performs wirelessly controlled stimulation concurrent with artifact-free neurochemical recording. These findings suggest that the integration of neurochemical recording with neurostimulation may be a useful first step toward the development of a closed-loop DBS system for human application.
    Journal of Neurosurgery 10/2013; · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrochemical techniques have long been utilized to investigate chemical changes in the neuronal microenvironment. Preclinical models have demonstrated the successful monitoring of changes in various neurotransmitter systems in vivo with high temporal and spatial resolution. The expansion of electrochemical recording to humans is a critical yet challenging goal to elucidate various aspects of human neurophysiology and to create future therapies. We have designed a novel device named the WINCS (Wireless Instantaneous Neurotransmitter Concentration Sensing) system that combines rapid scan voltammetry with wireless telemetry for highly resolved electrochemical recording and analysis. WINCS utilizes fast-scan cyclic voltammetry and fixed potential amperometry for in vivo recording and has demonstrated high temporal and spatial resolution in detecting changes in extracellular levels of a wide range of analytes including dopamine, adenosine, glutamate, serotonin, and histamine. Neurochemical monitoring in humans represents a new approach to understanding the neurophysiology of the central nervous system, the neurobiology of numerous diseases, and the underlying mechanism of various neurosurgical therapies. This article addresses the current understanding of electrochemistry, its application in humans, and future directions.
    Stereotactic and Functional Neurosurgery 02/2013; 91(3):141-147. · 1.46 Impact Factor

Full-text (2 Sources)

View
9 Downloads
Available from
May 19, 2014