Article

Mammalian microRNAs: experimental evaluation of novel and previously annotated genes.

Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
Genes & development (Impact Factor: 12.64). 04/2010; 24(10):992-1009. DOI: 10.1101/gad.1884710
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are small regulatory RNAs that derive from distinctive hairpin transcripts. To learn more about the miRNAs of mammals, we sequenced 60 million small RNAs from mouse brain, ovary, testes, embryonic stem cells, three embryonic stages, and whole newborns. Analysis of these sequences confirmed 398 annotated miRNA genes and identified 108 novel miRNA genes. More than 150 previously annotated miRNAs and hundreds of candidates failed to yield sequenced RNAs with miRNA-like features. Ectopically expressing these previously proposed miRNA hairpins also did not yield small RNAs, whereas ectopically expressing the confirmed and newly identified hairpins usually did yield small RNAs with the classical miRNA features, including dependence on the Drosha endonuclease for processing. These experiments, which suggest that previous estimates of conserved mammalian miRNAs were inflated, provide a substantially revised list of confidently identified murine miRNAs from which to infer the general features of mammalian miRNAs. Our analyses also revealed new aspects of miRNA biogenesis and modification, including tissue-specific strand preferences, sequential Dicer cleavage of a metazoan precursor miRNA (pre-miRNA), consequential 5' heterogeneity, newly identified instances of miRNA editing, and evidence for widespread pre-miRNA uridylation reminiscent of miRNA regulation by Lin28.

2 Followers
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The optimal coordination of the transcriptional response of host cells to infection is essential for establishing appropriate immunological outcomes. In this context, the role of microRNAs (miRNAs) - important epigenetic regulators of gene expression - in regulating mammalian immune systems is increasingly well recognised. However, the expression dynamics of miRNAs, and that of their isoforms, in response to infection remains largely unexplored. Here, we characterized the genome-wide miRNA transcriptional responses of human dendritic cells, over time, to various mycobacteria differing in their virulence as well as to other bacteria outside the genus Mycobacterium, using small RNA-sequencing. We detected the presence of a core temporal response to infection, shared across bacteria, comprising 49 miRNAs, highlighting a set of miRNAs that may play an essential role in the regulation of basic cellular responses to stress. Despite such broadly shared expression dynamics, we identified specific elements of variation in the miRNA response to infection across bacteria, including a virulence-dependent induction of the miR-132/212 family in response to mycobacterial infections. We also found that infection has a strong impact on both the relative abundance of the miRNA hairpin arms and the expression dynamics of miRNA isoforms. That we observed broadly consistent changes in relative arm expression and isomiR distribution across bacteria suggests that this additional, internal layer of variability in miRNA responses represents an additional source of subtle miRNA-mediated regulation upon infection. Collectively, this study increases our understanding of the dynamism and role of miRNAs in response to bacterial infection, revealing novel features of their internal variability and identifying candidate miRNAs that may contribute to differences in the pathogenicity of mycobacterial infections.
    PLoS Genetics 03/2015; 11(3):e1005064. DOI:10.1371/journal.pgen.1005064 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small RNAs include different classes essential for endogenous gene regulation and cellular defence against genomic parasites. However, a comprehensive analysis of the small RNA pathways in the germline of the mosquito Anopheles gambiae has never been performed despite their potential relevance to reproductive capacity in this malaria vector. We performed small RNA deep sequencing during larval and adult gonadogenesis and find that they predominantly express four classes of regulatory small RNAs. We identified 45 novel miRNA precursors some of which were sex-biased and gonad-enriched , nearly doubling the number of previously known miRNA loci. We also determine multiple genomic clusters of 24-30 nt Piwi-interacting RNAs (piRNAs) that map to transposable elements (TEs) and 3'UTR of protein coding genes. Unusually, many TEs and the 3'UTR of some endogenous genes produce an abundant peak of 29-nt small RNAs with piRNA-like characteristics. Moreover, both sense and antisense piRNAs from TEs in both Anopheles gambiae and Drosophila melanogaster reveal novel features of piRNA sequence bias. We also discovered endogenous small interfering RNAs (endo-siRNAs) that map to overlapping transcripts and TEs. This is the first description of the germline miRNome in a mosquito species and should prove a valuable resource for understanding gene regulation that underlies gametogenesis and reproductive capacity. We also provide the first evidence of a piRNA pathway that is active against transposons in the germline and our findings suggest novel piRNA sequence bias. The contribution of small RNA pathways to germline TE regulation and genome defence in general is an important finding for approaches aimed at manipulating mosquito populations through the use of selfish genetic elements.
    BMC Genomics 02/2015; 16(1):100. DOI:10.1186/s12864-015-1257-2 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Through posttranscriptional gene regulation, microRNA (miRNA) is linked to a wide variety of biological processes, including adipogenesis and lipid metabolism. Although miRNAs in mammalian adipogenesis have been worked on extensively, their study in chicken adipogenesis is still very limited. To find miRNAs potentially important for chicken preadipocyte development, we compared the preadipocyte miRNA expression profiles in two broiler lines divergently selected for abdominal fat content, by sequencing two small RNA libraries constructed for primary preadipocytes isolated from abdominal adipose tissues. After bioinformatics analyses, from chicken miRNAs deposited in miRBase 20.0, we identified 225 miRNAs to be expressed in preadipocytes, 185 in the lean line and 200 in the fat line (derived from 208 and 203 miRNA precursors, respectively), which corresponds to 114 miRNA families. The let-7 family miRNAs were the most abundant. Furthermore, we validated the sequencing results of 15 known miRNAs by qRT-PCR, and confirmed that the expression levels of most miRNAs correlated well with those of Solexa sequencing. A total of 33 miRNAs was significantly differentially expressed between the two chicken lines (P<0.05). Gene ontology analysis revealed that they could target genes enriched in the regulation of gene transcription and chromatin function, response to insulin stimulation, and IGF-1 signaling pathways, which could have important roles in preadipocyte development. Therefore, a valuable information and resource of miRNAs on chicken adipogenesis were provided in this study. Future functional investigations on these miRNAs could help explore related genes and molecular networks fundamental to preadipocyte development.
    PLoS ONE 02/2015; 10(2):e0117843. DOI:10.1371/journal.pone.0117843 · 3.53 Impact Factor