Mammalian microRNAs: experimental evaluation of novel and previously annotated genes

Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
Genes & development (Impact Factor: 12.64). 04/2010; 24(10):992-1009. DOI: 10.1101/gad.1884710
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are small regulatory RNAs that derive from distinctive hairpin transcripts. To learn more about the miRNAs of mammals, we sequenced 60 million small RNAs from mouse brain, ovary, testes, embryonic stem cells, three embryonic stages, and whole newborns. Analysis of these sequences confirmed 398 annotated miRNA genes and identified 108 novel miRNA genes. More than 150 previously annotated miRNAs and hundreds of candidates failed to yield sequenced RNAs with miRNA-like features. Ectopically expressing these previously proposed miRNA hairpins also did not yield small RNAs, whereas ectopically expressing the confirmed and newly identified hairpins usually did yield small RNAs with the classical miRNA features, including dependence on the Drosha endonuclease for processing. These experiments, which suggest that previous estimates of conserved mammalian miRNAs were inflated, provide a substantially revised list of confidently identified murine miRNAs from which to infer the general features of mammalian miRNAs. Our analyses also revealed new aspects of miRNA biogenesis and modification, including tissue-specific strand preferences, sequential Dicer cleavage of a metazoan precursor miRNA (pre-miRNA), consequential 5' heterogeneity, newly identified instances of miRNA editing, and evidence for widespread pre-miRNA uridylation reminiscent of miRNA regulation by Lin28.

Download full-text


Available from: Gary P Schroth, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression.
    Cell Reports 10/2014; 9(2). DOI:10.1016/j.celrep.2014.09.007 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts.
    Genome Biology and Evolution 07/2014; 6(8). DOI:10.1093/gbe/evu151 · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) represents the major histological subtype of liver cancer. Tumorigenic changes in hepatic cells potentially result from aberrant expression of microRNAs (miRNAs). Individual microRNA gene may give rise to miRNAs of different length, named isomiRNAs that proved to be functionally relevant. Since microRNA length heterogeneity in hepatic tissue has not been described before, we employed next-generation sequencing to comprehensively analyze microRNA transcriptome in HCC tumors (n=24) and unaffected tissue adjacent to tumors (n=24), including samples with (n=15) and without cirrhosis (n=9). We detected 374 microRNAs expressed in liver, including miR-122-5p that constituted over 39% of the hepatic miRnome. Among the liver expressed miRs, the levels of 64 significantly differed between tumor and control samples (FDR<0.05,fold change>2). Top deregulated miRNAs included miR-1269a (T/N=22.95), miR-3144-3p (T/N=5.24), miR-183-5p (T/N=4.63), miR-10b-5p (T/N=3.87), miR-490-3p (T/N=0.13), miR-199a-5p (T/N=0.17), miR-199a-3p/miR-199b-3p (T/N=0.19), miR-214-5p (T/N=0.20) and miR-214-3p (T/N=0.21). Almost all miRNA genes produced several mature molecules differing in length (isomiRNAs). The reference sequence was not the most prevalent in 38.6% and completely absent in 10.5% of isomiRNAs. Over 26.1% of miRNAs produced isoforms carrying ≥ 2 alternative seed regions, of which 35.5% constituted novel, previously unknown seeds. This fact sheds new light on the percentage of the human genome regulated by microRNAs and their variants. Among the most deregulated miRNAs, miR-199a-3p/miR-199b-3p (T/N fold change=0.18,FDR=0.005) was expressed in 9 isoforms with 3 different seeds, concertedly leading to upregulation of TGF-beta signaling pathway (OR=1.99;p=0.004). In conclusion, the study reveals the comprehensive miRNome of hepatic tissue and provides new tools for investigation of microRNA-dependent pathways in cirrhotic liver and hepatocellular carcinoma.
    The International Journal of Biochemistry & Cell Biology 05/2014; 53. DOI:10.1016/j.biocel.2014.05.020 · 4.24 Impact Factor

Similar Publications