Article

Sex steroid receptors in male human bladder: expression and biological function.

Sexual Medicine and Andrology Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy.
Journal of Sexual Medicine (Impact Factor: 3.15). 08/2010; 7(8):2698-713. DOI: 10.1111/j.1743-6109.2010.01811.x
Source: PubMed

ABSTRACT In male, lower urinary tract symptoms (LUTS) have been associated, beside benign prostatic hyperplasia, to some unexpected comorbidities (hypogonadism, obesity, metabolic syndrome), which are essentially characterized by an unbalance between circulating androgens/estrogens. Within the bladder, LUTS are linked to RhoA/Rho-kinase (ROCK) pathway overactivity.
To investigate the effects of changing sex steroids on bladder smooth muscle.
ER α, ER β, GPR30/GPER1 and aromatase mRNA expression was analyzed in male genitourinary tract tissues, and cells isolated from bladder, prostate, and urethra. Estrogen and G1 effect on RhoA/ROCK signaling output like cell migration, gene expression, and cytoskeletal remodeling, and [Ca(2+) ](i) was also studied in hB cells. Contractile studies on bladder strips from castrated male rats supplemented with estradiol and testosterone was also performed.
The effects of classical (ER α, ER β) and nonclassical (GPR30/GPER1) estrogen receptor ligands (17 β-estradiol and G1, respectively) and androgens on RhoA/ROCK-.mediated cell functions were studied in hB cells. Contractility studies were also performed in bladder strips from castrated male rats supplemented with testosterone or estradiol.
Aromatase and sex steroid receptors, including GPR30, were expressed in human bladder and mediates several biological functions. Both 17 β-estradiol and G1 activated calcium transients and induced RhoA/ROCK signaling (cell migration, cytoskeleton remodeling and smooth muscle gene expression). RhoA/ROCK inhibitors blunted these effects. Estrogen-, but not androgen-supplementation to castrated rats increased sensitivity to the ROCK inhibitor, Y-27632 in isolated bladder strips. In hB cells, testosterone elicited effects similar to estrogen, which were abrogated by blocking its aromatization through letrozole.
Our data indicate for the first time that estrogen-more than androgen-receptors up-regulate RhoA/ROCK signaling. Since an altered estrogen/androgen ratio characterizes conditions, such as aging, obesity and metabolic syndrome, often associated to LUTS, we speculate that a relative hyperestrogenism may induce bladder overactivity through the up-regulation of RhoA/ROCK pathway.

0 Bookmarks
 · 
146 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionEstrogen receptor (ER) α is critical in mediating the harmful effects of hyperestrogenism in fetal or neonatal life on the developing penis. In contrast, little is known on the impact of an excess of estrogens on penile function in adulthood.AimTo investigate the effect of estrogens on metabolic syndrome (MetS)-associated erectile dysfunction (ED).Methods We employed a recently established animal model of high fat diet (HFD)-induced MetS. Subgroups of MetS rabbits were dosed with either testosterone (T) or tamoxifen. We evaluated penile responsiveness to acetylcholine (Ach) as well as the expression of genes related to penile smooth muscle relaxation and contractility.Main Outcome MeasureAssociations between MetS-induced penile alterations and sex steroids were investigated in an animal model of HFD-induced MetS. To understand the role of either androgen deficiency or estrogen excess on ED, we treated subgroups of MetS rabbits with either T or tamoxifen, a classical ER antagonist.ResultsFeeding an HFD-induced MetS was associated to elevated estradiol (E2) and low T levels. E2, but not T, was independently and negatively associated with genes able to affect penile erection. Smooth muscle-related markers decreased as a function of E2 and were positively associated with all the variables investigated. Increasing concentrations of circulating E2 were negatively associated with Ach-induced relaxation. In HFD rabbits, in vivo T dosing significantly improved MetS and completely normalized circulating E2. Conversely, in vivo tamoxifen dosing reduced visceral adiposity and partially restored T level. Ach-induced relaxation was severely impaired by HFD and significantly restored, up to the control level, by both tamoxifen and T dosing. In rabbit smooth muscle cells cultures 17β-E2 (1 nM) significantly reduced the expression of α-smooth muscle actin, transgelin, and phosphodiesterase type 5. The effects of 17β-E2 were completely reverted by tamoxifen (100 nM).Conclusions This study demonstrates, for the first time, that HFD-induced ED is more associated with a high E2, rather than to a low T, milieu. HFD-induced ED is partially restored by in vivo treatment not only with T but also with the nonsteroidal ER antagonist, tamoxifen. Vignozzi L, Filippi S, Comeglio P, Cellai I, Morelli A, Marchetta M, and Maggi M. Estrogen mediates metabolic syndrome-induced erectile dysfunction: A study in the rabbit. J Sex Med **;**:**–**.
    Journal of Sexual Medicine 10/2014; · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endometriosis, the most common cause of chronic pelvic pain, is an estrogen-dependent disease in which classic estrogen receptors (ERα, ERβ) play an important role. Although recent evidence suggests that the novel G protein-coupled estrogen receptor (GPR30) also plays a key role in the progression of endometriosis, whether it is also involved in endometriosis pain is still unknown. Here we tested the hypothesis that GPR30 expressed by nociceptors contributes to endometriosis pain. Intramuscular injection of the GPR30 agonists raloxifene or 17β-estradiol produced a fast-onset, persistent, mechanical hyperalgesia at the site of the injection. Intrathecal antisense (AS) oligodeoxynucleotides (ODN), but not mismatch (MM) ODN, targeting mRNA for GPR30 markedly inhibited its protein expression in nociceptors and attenuated the mechanical hyperalgesia induced by local raloxifene or 17β-estradiol. Pretreatment with the GPR30 antagonist G-36 also inhibited the hyperalgesia induced by raloxifene or 17β-estradiol in naive control rats. Surgical implant of autologous uterine tissue onto the gastrocnemius muscle, which induces endometriosis-like lesions, produced local mechanical hyperalgesia. Intrathecal AS, but not MM, ODN targeting GPR30 mRNA reversibly inhibited the mechanical hyperalgesia at the site of endometriotic lesions. Finally, intralesional injection of the GPR30 antagonist G-36 also inhibited the mechanical hyperalgesia at the site of ectopic uterine tissue. We conclude that local GPR30 agonists produce persistent mechanical hyperalgesia in naive female rats, whereas local GPR30 antagonists inhibit mechanical hyperalgesia in a model of endometriosis pain. Thus, GPR30 expressed by nociceptors innervating ectopic uterine lesions might play a major role in endometriosis pain.
    Pain 12/2014; 155(12):2680-6. · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endometriosis, the most common cause of chronic pelvic pain, is an estrogen-dependent disease in which classic estrogen receptors (ERα, ERβ) play an important role. While recent evidence suggests that the novel G protein-coupled estrogen receptor (GPR30) also plays a key role in the progression of endometriosis, whether it is also involved in endometriosis pain is still unknown. Here we tested the hypothesis that GPR30 expressed by nociceptors contributes to endometriosis pain. Intramuscular injection of the GPR30 agonists raloxifene or 17β-estradiol produced a fast-onset, persistent, mechanical hyperalgesia at the site of the injection. Intrathecal antisense (AS) oligodeoxynucleotides (ODN), but not mismatch (MM) ODN, targeting mRNA for GPR30 markedly inhibited its protein expression in nociceptors and attenuated the mechanical hyperalgesia induced by local raloxifene or 17β-estradiol. Pre-treatment with the GPR30 antagonist G-36 also inhibited the hyperalgesia induced by raloxifene or 17β-estradiol, in naïve control rats. Surgical implant of autologous uterine tissue onto the gastrocnemius muscle, which induces endometriosis-like lesions, produced local mechanical hyperalgesia. Intrathecal AS, but not MM, ODN targeting GPR30 mRNA reversibly inhibited the mechanical hyperalgesia at the site of endometriotic lesions. Finally, intralesional injection of the GPR30 antagonist G-36 also inhibited the mechanical hyperalgesia at the site of ectopic uterine tissue. We conclude that local GPR30 agonists produce persistent mechanical hyperalgesia in naïve female rats, whereas local GPR30 antagonists inhibit mechanical hyperalgesia in a model of endometriosis pain. Thus, GPR30 expressed by nociceptors innervating ectopic uterine lesions might play a major role in endometriosis pain.
    Pain 09/2014; · 5.64 Impact Factor