Article

Neurogenesis in substantia nigra of parkinsonian brains?

Experimental Neurology, Philipps University, D-35033 Marburg, Germany.
Journal of Neural Transmission (Impact Factor: 3.05). 01/2009; DOI: 10.1007/978-3-211-92660-4_23
Source: PubMed

ABSTRACT The clinical motor dysfunction in Parkinson's disease is primarily the consequence of a progressive degeneration of dopaminergic neurons in the substantia nigra of the nigrostriatal pathway. The degeneration of this tract provokes a depletion of dopamine in the striatum, where it is required as a permissive factor for normal motor function. Despite intense investigations, no effective therapy is available to prevent the onset or to halt the progression of the neuronal cell loss. Therefore, recent years have seen research into the mechanisms of endogenous repair processes occurring in the adult brain, particularly in the substantia nigra. Neurogenesis occurs in the adult brain in a constitutive manner under physiological circumstances within two regions: the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. In contrast to these two so-called neurogenic areas, the remainder of the brain is considered to be primarily nonneurogenic in nature, implying that no new neurons are produced there under normal conditions. The occurrence of adult neurogenesis in the substantia nigra under the pathological conditions of Parkinson's disease, however, remains controversial. Here, we review the published evidence of whether adult neurogenesis exists or not within the substantia nigra, where dopaminergic neurons are lost in Parkinson's disease.

0 Bookmarks
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More than a third of Alzheimer's disease (AD) patients show nigrostriatal pathway disturbances, resulting in akinesia (inability to initiate movement) and bradykinesia (slowness of movement). The high prevalence of this dysfunction of dopaminergic neuron in the nigrostriatal pathway in AD suggests that the risk factors for AD appear also significant risk factors for substantia nigra pars compacta (SNpc) lesions. Previously, we have demonstrated that allopregnanolone (APα) promotes neurogenesis and improves the cognitive function in a triple transgenic mouse model of AD (3xTgAD). In this study, we sought to exam 1) the SNpc lesions in 3xTgAD mice and 2) the impact of APα on promoting the regeneration of new dopaminergic neurons in SNpc of the 3xTgAD mice. The number of Nissl-stained total neurons, tyrosine hydroxylase (TH) positive neurons, and BrdU/TH double positive newly formed neurons were analyzed with unbiased stereology. In the SNpc of 3xTgAD mice, TH positive neurons was 47+- 18 % (p = 0.007), total neurons was 62 +-11.6 % (p = 0.016), of those in the SNpc of non-Tg mice, respectively. APα treatment increased the TH positive neurons in the SNpc of 3xTgAD mice to 93.2 +- 18.5 (p = 0.021 vs. 3xTgAD vehicle) and the total neurons to 84.9+- 6.6 (p = 0.046 vs. 3xTgAD vehicle) of non-Tg mice. These findings indicate that there is a loss of neurons, specifically the TH positive neurons in SNpc of 3xTgAD mice, and that APα reverses the lesion in SNpc of 3xTgAD by increasing the formation of new TH neurons.
    Current Alzheimer research 01/2012; 9(4):473-80. · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence has demonstrated that neurogenesis in the subventricular zone (SVZ) is significantly decreased in Parkinson's disease (PD). Modulation of endogenous neurogenesis would have a significant impact on future therapeutic strategies for neurodegenerative diseases. In the present study, we investigated the augmentative effects of human mesenchymal stem cells (hMSCs) on neurogenesis in a PD model. Neurogenesis was assessed in vitro with 1-methyl-4- phenylpyridinium (MPP+) treatment using neural precursor cells (NPCs) isolated from the SVZ and in vivo with a BrdU-injected animal model of PD using 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). Immunochemical analyses were used to measure neurogenic activity. The number of BrdU-ir cells in the SVZ and the substantia nigra (SN) was significantly increased in the hMSC-treated PD group compared with the MPTP-only-treated group. Double-stained cells for BrdU and tyrosine hydroxylase were notably observed in the SN of hMSC-treated PD animals, and they did not colocalize with the nuclear matrix; however, double-stained cells were not detected in the SN of the MPTP-induced PD animal model. Furthermore, hMSC administration increased the expression of the epidermal growth factor receptor (EGFR) in the SVZ of PD animals, and coculture of hMSCs significantly increased the release of EGF in the medium of MPP+-treated NPCs. The present study demonstrated that hMSC administration significantly augmented neurogenesis in both the SVZ and SN of PD animal models, which led to increased differentiation of NPCs into dopaminergic neurons in the SN. Additionally, hMSC-induced modulation of EGF seems to be an underlying contributor to the enhancement of neurogenesis by hMSCs. The modulation of endogenous adult neurogenesis to repair the damaged PD brain using hMSCs would have a significant impact on future strategies for PD treatment.
    Cell Transplantation 04/2012; · 4.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is characterized by bradykinesia, hypokinesia/ akinesia, rigidity, tremor, and postural instability, caused by dopaminergic (DA) striatal denervation. The prevalence of PD increases from 50 years of age with steep rise after age 60 years. Current treatment of PD relies heavily on replacing lost dopamine either with its precursor L-dopa or dopamine agonists (ropinirole, pramipexole, bromocriptine, lisuride etc). Other pharmacological measures like catechol-O-methyltrasferase (COMT) inhibitors like entacopone, telcapone and monoamine oxidase B (MAO-B) inhibitors like selegiline and rasagiline are also useful, while L-dopa remains the gold standard in the treatment of PD. Emerging therapies are focusing on cell based therapeutics derived from various sources.
    Annals of Neurosciences 04/2011; 18(2):76-83.

Full-text

View
244 Downloads
Available from
May 31, 2014

Similar Publications