Detection of Virulence to Resistance Gene Sr24 Within Race TTKS of Puccinia graminis f. sp. tritici

Plant Disease (Impact Factor: 3.02). 06/2008; 92(6). DOI: 10.1094/PDIS-92-6-0923
Source: OAI


The stem rust resistance gene Sr24 is effective against most races of Puccinia graminis f. sp. tritici, including race TTKS (syn. Ug99), and is used widely in commercial wheat cultivars worldwide. In 2006, susceptible infection responses were observed on wheat lines and cultivars carrying Sr24 in a field stem rust screening nursery at Njoro, Kenya. We derived 28 single-pustule isolates from stem rust samples collected from the 2006 Njoro nursery. The isolates were evaluated for virulence on 16 North American stem rust differential lines; on wheat lines carrying Sr24, Sr31, Sr38, and SrMcN; and on a wheat cultivar with a combination of Sr24 and Sr31. All isolates were identified as race TTKS with additional virulence on Sr31 and Sr38. These isolates were divided into two groups: group A (seven isolates and the two control isolates), producing a low infection type, and group B (21 isolates), producing a high infection type on Sr24, respectively. Isolates of group B represented a new variant of race TTKS with virulence to Sr24. Eighteen simple sequence repeat (SSR) markers were used to examine the genetic relationship between these two groups of isolates in race TTKS and five North American races (MCCF, QCCQ, RCRS, RTHS, and TPMK) that are representative of distinct lineage groups. All isolates of race TTKS shared an identical SSR genotype and were clearly different from North American races. The virulence and SSR data indicated that the new variant of race TTKS with Sr24 virulence likely has arisen via mutation within the TTKS genetic lineage. We propose to revise the North American stem rust nomenclature system by the addition of four genes (Sr24, Sr31, Sr38, and SrMcN) as the fifth set. This revision recognizes the virulence on Sr31 and differentiates isolates within race TTKS into two separate races: TTKSK and TTKST, with avirulence and virulence on Sr24, respectively. The occurrence of race TTKST with combined virulence on Sr24 and Sr31 has substantially increased the vulnerability of wheat to stem rust worldwide.

Download full-text


Available from: Tom Fetch,
104 Reads
  • Source
    • "TTKSP is phenotypically similar to PTKST except for avirulence to Sr31 and similar to TTKSF except for virulence to Sr24 (Visser et al., 2011). The Sr24 gene is one of the genes that were initially identified as conferring resistance to Ug99 (Jin et al., 2008). Virulence of TTKSP to Sr24 was of particular concern in South Africa as more than 20% of the commercial cultivars and elite germplasm had Sr24 as a major resistance gene (Le Roux and Rijkenberg, 1987). "
  • Source
    • "(virulence phenotype HKCJC) were obtained from isolates kept at the Cereal Research Centre, Morden. Isolates were increased and their virulence phenotypes were verified using 20 standard differential lines and the international letter code nomenclature (Jin et al. 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Race-specific resistance of wheat to Puccinia graminis f. sp. tritici is primarily posthaustorial and often involves the induction of a hypersensitive response (HR). The aim of this study was to investigate host defense responses induced in interactions between P. graminis f. sp. tritici races and wheat lines carrying different race-specific stem rust resistance (Sr) genes. In incompatible interactions between wheat lines carrying Sr36 in three genetic backgrounds (LMPG, Prelude, or W2691) and avirulent P. graminis f. sp. tritici races MCCFC or RCCDM, callose accumulated within 24 h in wheat guard cells contacted by a P. graminis f. sp. tritici appressorium, and P. graminis f. sp. tritici ingress was inhibited following appressorium formation. Accordingly, the expression of transcripts encoding a callose synthase increased in the incompatible interaction between LMPG-Sr36 and avirulent P. graminis f. sp. tritici race MCCFC. Furthermore, the inhibition of callose synthesis through the infiltration of 2-deoxy-D-glucose (DDG) increased the ability of P. graminis f. sp. tritici race MCCFC to infect LMPG-Sr36. A similar induction of callose deposition in wheat guard cells was also observed within 24 h after inoculation (hai) with avirulent P. graminis f. sp. tritici race HKCJC on LMPG-Sr5 plants. In contrast, this defense response was not induced in incompatible interactions involving Sr6, Sr24, or Sr30. Instead, the induction of an HR and cellular lignification were noted. The manifestation of the HR and cellular lignification was induced earlier (24 hai) and was more extensive in the resistance response mediated by Sr6 compared with those mediated by Sr24 or Sr30. These results indicate that the resistance mediated by Sr36 is similar to that mediated by Sr5 but different from those triggered by Sr6, Sr24, or Sr30. Resistance responses mediated by Sr5 and Sr36 are prehaustorial, and are a result of very rapid recognition of molecules derived from avirulent isolates of P. graminis f. sp. tritici, in contrast to the responses triggered in lines with Sr6, Sr24, and Sr30.
    Phytopathology 06/2015; 105(6):PHYTO08140213R. DOI:10.1094/PHYTO-08-14-0213-R · 3.12 Impact Factor
  • Source
    • "In 1998 a new race group, Ug99, then capable of infecting over 80% of the world's wheat germplasm (Singh et al., 2008), was discovered in Uganda. Ug99 has since migrated as far north as Iran, and has evolved to overcome an even larger set of major effect resistance genes (R-genes), increasing the susceptibility of commercially grown cultivars to about 90% (Jin et al., 2008, 2009). The emergence and continued evolution of Ug99 has prompted efforts to rapidly develop Ug99 resistant cultivars adapted to vulnerable regions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem rust of wheat (Triticum aestivum L.) caused by Puccinia graminis f. sp. tritici Eriks. and E. Henn. is a globally important disease that can cause severe yield loss. Breeding for quantitative stem rust resistance (QSRR) is important for developing cultivars with durable resistance. Genomic selection (GS) could increase rates of genetic gain for quantitative traits, but few experiments comparing GS and phenotypic selection (PS) have been conducted. Our objectives were to (i) compare realized gain from GS based on markers only with that of PS for QSRR in spring wheat using equal selection intensities; (ii) determine if gains agree with theoretical expectations; and (iii) compare the impact of GS and PS on inbreeding, genetic variance, and correlated response for pseudo-black chaff (PBC), a correlated trait. Over 2 yr, two cycles of GS were performed in parallel with one cycle of PS, with each method replicated twice. For GS, markers were generated using genotyping-by-sequencing, the prediction model was initially trained using historical data, and the model was updated before the second GS cycle. Overall, GS and PS led to a 31 ± 11 and 42 ± 12% increase in QSRR and a 138 ± 22 and 180 ± 70% increase in PBC, respectively. Genetic gains were not significant but were in agreement with expectations. Per year, gains from GS and PS were equal, but GS led to significantly lower genetic variance. This shows that while GS and PS can lead to equal rates of short-term gains, GS can reduce genetic variance more rapidly. Further work to develop efficient GS implementation strategies in spring wheat is warranted.
    The Plant Genome 01/2015; DOI:10.3835/plantgenome2014.10.0074 · 3.93 Impact Factor
Show more