Establishment of HIV Latency in Primary CD4(+) Cells Is due to Epigenetic Transcriptional Silencing and P-TEFb Restriction

Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4960, USA.
Journal of Virology (Impact Factor: 4.44). 07/2010; 84(13):6425-37. DOI: 10.1128/JVI.01519-09
Source: PubMed


The development of suitable experimental systems for studying HIV latency in primary cells that permit detailed biochemical analyses and the screening of drugs is a critical step in the effort to develop viral eradication strategies. Primary CD4(+) T cells were isolated from peripheral blood and amplified by antibodies to the T-cell receptor (TCR). The cells were then infected by lentiviral vectors carrying fluorescent reporters and either the wild-type Tat gene or the attenuated H13L Tat gene. After sorting for the positive cells and reamplification, the infected cells were allowed to spontaneously enter latency by long-term cultivation on the H80 feeder cell line in the absence of TCR stimulation. By 6 weeks almost all of the cells lost fluorescent protein marker expression; however, more than 95% of these latently infected cells could be reactivated after stimulation of the TCR by alpha-CD3/CD28 antibodies. Chromatin immunoprecipitation assays showed that, analogously to Jurkat T cells, latent proviruses in primary CD4(+) T cells are enriched in heterochromatic markers, including high levels of CBF-1, histone deacetylases, and methylated histones. Upon TCR activation, there was recruitment of NF-kappaB to the promoter and conversion of heterochromatin structures present on the latent provirus to active euchromatin structures containing acetylated histones. Surprisingly, latently infected primary cells cannot be induced by tumor necrosis factor alpha because of a restriction in P-TEFb levels, which can be overcome by activation of the TCR. Thus, a combination of restrictive chromatin structures at the HIV long terminal repeat and limiting P-TEFb levels contribute to transcriptional silencing leading to latency in primary CD4(+) T cells.

1 Follower
7 Reads
    • "ChIP analysis was performed as previously described (Tyagi et al., 2010). Briefly, (1 Â 10 8 ) THP-1 cells were infected by the virus carrying pNL4-3-ΔE-EGFP. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. Copyright © 2015 Elsevier Inc. All rights reserved.
    Virology 09/2015; 483. DOI:10.1016/j.virol.2015.03.036 · 3.32 Impact Factor
  • Source
    • "cytic cell lines as well as in CD4 þ resting T cells . We found that IR treatment of cells correlated with dissocia - tion of the histone deacetylase HDAC1 , and methyl transferase SUV39H1 from the HIV - 1 LTR promoter . Direct involvement of these factors in HIV - 1 latency was shown previously by a number of colleagues ( Pearson et al . , 2008 ; Tyagi et al . , 2010 ) . Our data further suggest a triggering effect of IR on HIV - 1 transcription via epigenetic mechanisms . In fact , the studies of the last decade revealed involvement of various epigenetic factors in IR stress - induced transcription activation associated with DNA damage response . In IR - sensitive tumor cells , the γ - IR has been "
    [Show abstract] [Hide abstract]
    ABSTRACT: The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4(+) T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4(+) T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4(+) T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the "Shock and Kill" strategy for latently HIV-1 infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.
    Virology 07/2015; 485:1-15. DOI:10.1016/j.virol.2015.06.021 · 3.32 Impact Factor
  • Source
    • "Recently, various strategies have been used to generate primary CD4 T cells latently infected with HIV [5], [13], [21]–[24]. In many of these models, reactivation of latent HIV by TCR crosslinking is reduced by cyclosporin A (CsA), which inhibits calcineurin [5], [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Attempts to eradicate HIV have been thwarted by the persistence of a small pool of quiescent memory CD4 T cells that harbor a transcriptionally silent, integrated form of the virus that can produce infectious virions following an anamnestic immune response. Transcription factors downstream of T-cell receptor activation, such as NF-κB/Rel and nuclear factor of activated T cells (NFAT) transcription members, are considered important regulators of HIV transcription during acute HIV infection. We now report studies exploring their precise role as antagonists of HIV latency using cell and primary CD4 T cell models of HIV-1 latency. Surprisingly, RNA interference studies performed in J-Lat CD4 T cells suggested that none of the NFATs, including NFATc1, NFATc2, NFATc3, and NFAT5, played a key role in the reactivation of latent HIV. However, cyclosporin A markedly inhibited the reactivation response. These results were reconciled when calcium signaling through calcineurin was shown to potentiate prostratin induced activation of NF-κB that in turn stimulated the latent HIV long terminal repeat (LTR). Similar effects of calcineurin were confirmed in a primary CD4 T cell model of HIV latency. These findings highlight an important role for calcineurin in NF-κB-dependent induction of latent HIV transcription. Innovative approaches exploiting the synergistic actions of calcineurin and prostratin in the absence of generalized T-cell activation merit exploration as a means to attack the latent viral reservoir.
    PLoS ONE 10/2013; 8(10):e77749. DOI:10.1371/journal.pone.0077749 · 3.23 Impact Factor
Show more

Similar Publications


7 Reads
Available from