Article

Establishment of HIV Latency in Primary CD4(+) Cells Is due to Epigenetic Transcriptional Silencing and P-TEFb Restriction

Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4960, USA.
Journal of Virology (Impact Factor: 4.65). 07/2010; 84(13):6425-37. DOI: 10.1128/JVI.01519-09
Source: PubMed

ABSTRACT The development of suitable experimental systems for studying HIV latency in primary cells that permit detailed biochemical analyses and the screening of drugs is a critical step in the effort to develop viral eradication strategies. Primary CD4(+) T cells were isolated from peripheral blood and amplified by antibodies to the T-cell receptor (TCR). The cells were then infected by lentiviral vectors carrying fluorescent reporters and either the wild-type Tat gene or the attenuated H13L Tat gene. After sorting for the positive cells and reamplification, the infected cells were allowed to spontaneously enter latency by long-term cultivation on the H80 feeder cell line in the absence of TCR stimulation. By 6 weeks almost all of the cells lost fluorescent protein marker expression; however, more than 95% of these latently infected cells could be reactivated after stimulation of the TCR by alpha-CD3/CD28 antibodies. Chromatin immunoprecipitation assays showed that, analogously to Jurkat T cells, latent proviruses in primary CD4(+) T cells are enriched in heterochromatic markers, including high levels of CBF-1, histone deacetylases, and methylated histones. Upon TCR activation, there was recruitment of NF-kappaB to the promoter and conversion of heterochromatin structures present on the latent provirus to active euchromatin structures containing acetylated histones. Surprisingly, latently infected primary cells cannot be induced by tumor necrosis factor alpha because of a restriction in P-TEFb levels, which can be overcome by activation of the TCR. Thus, a combination of restrictive chromatin structures at the HIV long terminal repeat and limiting P-TEFb levels contribute to transcriptional silencing leading to latency in primary CD4(+) T cells.

1 Follower
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Almost 30 years after its initial discovery, infection with the human immunodeficiency virus-1 (HIV-1) remains incurable and the virus persists due to reservoirs of latently infected CD4+ memory T-cells and sanctuary sites within the infected individual where drug penetration is poor. Reactivating latent viruses has been a key strategy to completely eliminate the virus from the host but many difficulties and unanswered questions remain. In this review, the latest developments in HIV-persistence and latency research are presented.
    Journal of General Virology 01/2013; 94(Pt 5). DOI:10.1099/vir.0.049296-0 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Latently infected resting CD4+ T cells are the major barrier to curing HIV. We have recently demonstrated that chemokines, which bind to the chemokine receptors CCR7, CXCR3 and CCR6, facilitate efficient HIV nuclear localisation and integration in resting CD4+ T cells, leading to latency. As latently infected cells are enriched in lymphoid tissues, where chemokines are highly concentrated, this may provide a mechanism for the generation of latently infected cells in vivo. Here we review the role of chemokines in HIV persistence; the main signalling pathways that are involved; and how these pathways may be exploited to develop novel strategies to reduce or eliminate latently infected cells.
    Cytokine & growth factor reviews 06/2012; 23(4-5):151-7. DOI:10.1016/j.cytogfr.2012.05.002 · 6.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV transcription is regulated at the step of elongation by the viral Tat protein and the cellular positive transcription elongation factor b (P-TEFb; Cdk9/cyclin T1). Herein, a human cyclin T1 mutant, cyclin T1-U7, which contains four substitutions and one deletion in the N-terminal cyclin box, was stably expressed in HeLa cells. HIV transcription was efficiently inhibited in HeLa-HA-CycT1-U7 stable cells. Cyclin T1-U7 bound Tat but did not modulate its expression levels, which remained high. Importantly cyclin T1-U7 failed to interact with Cdk9 or HEXIM1 and did not interfere with endogenous P-TEFb activity to stimulate MEF2C or NFkB mediated transcription. In a T cell line and primary CD4+ cells, cyclin T1-U7 also inhibited HIV transcription. We conclude that cyclin T1-U7 sequesters Tat from P-TEFb and inhibits HIV transcription. Importantly, N-terminal residues in cyclin T1 are specifically involved in the binding of cyclin T1 to HEXIM1 but not to Tat.
    Virology 05/2012; 426(2):152-61. DOI:10.1016/j.virol.2012.01.033 · 3.28 Impact Factor

Preview

Download
1 Download
Available from