X-ray spectromicroscopy study of competitive adsorption of protein and peptide onto polystyrene-poly(methyl methacrylate).

BIMR, TuesduesMcMaster University, Hamilton, Ontario, Canada L8S 4M1.
Biointerphases (Impact Factor: 1.91). 06/2008; 3(2):FB27. DOI: 10.1116/1.2956637
Source: PubMed

ABSTRACT A synchrotron-based x-ray photoemission electron microscope (X-PEEM) was used to investigate the coadsorption of a mixture of human albumin serum and SUB-6, a synthetic antimicrobial peptide, to a phase-segregated polystyrene/poly(methyl methacrylate) (PMMA) substrate at varying concentrations and pH. The authors show that X-PEEM could detect the peptide adsorbed from solution at concentrations as low as 5.5 x 10(-9)M and could differentiate the four components via near-edge x-ray absorption fine structure spectromicroscopy. At neutral pH the SUB-6 peptide adsorbed preferentially to PMMA. At a pH of 11.8 where the charge on the peptide was neutralized, there was a more balanced adsorption of both species on the PMMA domains. The authors interpret these observations as indicative of the formation of an electrostatic complex between positive peptide and negative protein at pH of 7.0. This solution complex had an adsorption behavior that depended on the polarity of the substrate domains, and favored adsorption to the electronegative PMMA regions. At a pH of 11.8 the complex formation was suppressed and a more competitive adsorption process was observed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of antimicrobial peptide anoplin with 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] lipid monolayers was imaged with atomic force microscopy, scanning transmission X-ray microscopy, and X-ray photoemission electron microscopy. X-ray absorption spectromicroscopy of the surface revealed the domains of the phase-segregated surface to be composed of 98(±5)% lipid while the matrix consisted of a ~50:50 lipid-peptide mixture. We show X-ray spectromicroscopy to be a valuable quantitative tool for label-free imaging of lipid monolayers with antimicrobial peptides at a lateral spatial resolution below 80 nm.
    Biophysics of Structure and Mechanism 03/2011; 40(6):805-10. · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synchrotron-based soft X-ray spectromicroscopy techniques are emerging as useful tools to characterize potentially biocompatible materials and to probe protein interactions with model biomaterial surfaces. Simultaneous quantitative chemical analysis of the near surface region of the candidate biomaterial, and adsorbed proteins, peptides or other biological species can be obtained at high spatial resolution via scanning transmission X-ray microscopy (STXM) and X-ray photoemission electron microscopy (X-PEEM). Both techniques use near-edge X-ray absorption fine structure (NEXAFS) spectral contrast for chemical identification and quantitation. The capabilities of STXM and X-PEEM for the analysis of biomaterials are reviewed and illustrated by three recent studies: (1) characterization of hydrophobic surfaces, including adsorption of fibrinogen (Fg) or human serum albumin (HSA) to hydrophobic polymeric thin films, (2) studies of HSA adsorption to biodegradable or potentially biocompatible polymers, and (3) studies of biomaterials under fully hydrated conditions. Other recent applications of STXM and X-PEEM to biomaterials are also reviewed.
    Materials. 01/2010;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding competitive adsorption-desorption of proteins onto surfaces is an important area of research in food processing and biomedical engineering. Here, we demonstrate, how electrospray-differential mobility analysis that has been traditionally used for characterizing bionanoparticles, can be used for quantifying complex competitive adsorption-desorption of oligomeric proteins or multiprotein systems using monomers and dimers of IgM as a model example onto silica and modified silica surfaces. Using ES-DMA, we show that IgM dimers show a preference to stay adsorbed to different surfaces although monomers adsorb more easily and desorption rates of monomers and dimers of IgM are surface-type-dependent and are not significantly affected by shear. We anticipate that this demonstration will make ES-DMA a popular "label-free" method for studying multicomponent multi-oligomeric protein adsorption to different surfaces in the future.
    Journal of Colloid and Interface Science 03/2013; · 3.17 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014