Altered physiological function, not structure, drives increased radiation-use efficiency of soybean grown at elevated CO2.

Institute of Chemistry and Dynamics of the Geosphere ICG-3, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse, 52425 Jülich, Germany.
Photosynthesis Research (Impact Factor: 3.19). 07/2010; 105(1):15-25. DOI: 10.1007/s11120-010-9548-6
Source: PubMed

ABSTRACT Previous studies of elevated carbon dioxide concentration ([CO(2)]) on crop canopies have found that radiation-use efficiency is increased more than radiation-interception efficiency. It is assumed that increased radiation-use efficiency is due to changes in leaf-level physiology; however, canopy structure can affect radiation-use efficiency if leaves are displayed in a manner that optimizes their physiological capacity, even though the canopy intercepts the same amount of light. In order to determine the contributions of physiology and canopy structure to radiation-use and radiation-interception efficiency, this study relates leaf-level physiology and leaf display to photosynthetic rate of the outer canopy. We used a new imaging approach that delivers three-dimensional maps of the outer canopy during the growing season. The 3D data were used to model leaf orientation and mean photosynthetic electron transport of the outer canopy to show that leaf orientation changes did not contribute to increased radiation-use; i.e. leaves of the outer canopy showed similar diurnal leaf movements and leaf orientation in both treatments. Elevated [CO(2)] resulted in an increased maximum electron transport rate (ETR(max)) of light reactions of photosynthesis. Modeling of canopy light interception showed that stimulated leaf-level electron transport at elevated [CO(2)], and not alterations in leaf orientation, was associated with stimulated radiation-use efficiency and biomass production in elevated [CO(2)]. This study provides proof of concept of methodology to quantify structure-function relationships in combination, allowing a quantitative estimate of the contribution of both effects to canopy energy conversion under elevated [CO(2)].

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant phenotyping is an emerging discipline in plant biology. Quantitative measurements of functional and structural traits help to better understand gene–environment interactions and support breeding for improved resource use efficiency of important crops such as bean (Phaseolus vulgaris L.). Here we provide an overview of state-of-the-art phenotyping approaches addressing three aspects of resource use efficiency in plants: belowground roots, aboveground shoots and transport/allocation processes. We demonstrate the capacity of high-precision methods to measure plant function or structural traits non-invasively, stating examples wherever possible. Ideally, high-precision methods are complemented by fast and high-throughput technologies. High-throughput phenotyping can be applied in the laboratory using automated data acquisition, as well as in the field, where imaging spectroscopy opens a new path to understand plant function non-invasively. For example, we demonstrate how magnetic resonance imaging (MRI) can resolve root structure and separate root systems under resource competition, how automated fluorescence imaging (PAM fluorometry) in combination with automated shape detection allows for high-throughput screening of photosynthetic traits and how imaging spectrometers can be used to quantify pigment concentration, sun-induced fluorescence and potentially photosynthetic quantum yield. We propose that these phenotyping techniques, combined with mechanistic knowledge on plant structure–function relationships, will open new research directions in whole-plant ecophysiology and may assist breeding for varieties with enhanced resource use efficiency varieties.
    Functional Plant Biology 10/2013; 38:968-983. DOI:10.1071/FP11164 · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Crops losses to tropospheric ozone (O(3)) in the United States are estimated to cost $1-3 billion annually. This challenge is expected to increase as O(3) concentrations ([O(3)]) rise over the next half century. This study tested the hypothesis that there is cultivar variation in the antioxidant, photosynthetic and yield response of soybean to growth at elevated [O(3)]. Ten cultivars of soybean were grown at elevated [O(3)] from germination through maturity at the Soybean Free Air Concentration Enrichment facility in 2007 and six were grown in 2008. Photosynthetic gas exchange, leaf area index, chlorophyll content, fluorescence and antioxidant capacity were monitored during the growing seasons in order to determine if changes in these parameters could be used to predict the sensitivity of seed yield to elevated [O(3)]. Doubling background [O(3)] decreased soybean yields by 17%, but the variation in response among cultivars and years ranged from 8 to 37%. Chlorophyll content and photosynthetic parameters were positively correlated with seed yield, while antioxidant capacity was negatively correlated with photosynthesis and seed yield, suggesting a trade-off between antioxidant metabolism and carbon gain. Exposure response curves indicate that there has not been a significant improvement in soybean tolerance to [O(3)] in the past 30 years.
    Plant Cell and Environment 04/2010; 33(9):1569-81. DOI:10.1111/j.1365-3040.2010.02165.x · 5.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. We show that a stereo imaging setup together with the appropriate image processing tools is capable of retrieving the geometric leaf surface properties of plants and canopies. Our software package provides whole-leaf statistics but also a local estimation of leaf angles, which may have great potential to better understand and quantify structural canopy traits for guided breeding and optimized crop management.
    Plant Methods 02/2015; 11(1):11. DOI:10.1186/s13007-015-0052-z · 2.59 Impact Factor


Available from