Risk for Asthma in Offspring of Asthmatic Mothers versus Fathers: A Meta-Analysis

Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America.
PLoS ONE (Impact Factor: 3.53). 05/2010; 5(4):e10134. DOI: 10.1371/journal.pone.0010134
Source: PubMed

ABSTRACT Many human epidemiologic studies demonstrate that maternal asthma confers greater risk of asthma to offspring than does paternal disease. However, a handful have shown the opposite. Given this disparity, a meta-analysis is necessary to determine the veracity and magnitude of the "maternal effect."
We screened the medical literature from 1966 to 2009 and performed a meta-analysis to compare the effect of maternal asthma vs. paternal asthma on offspring asthma susceptibility. Aggregating data from 33 studies, the odds ratio for asthma in children of asthmatic mothers compared with non-asthmatic mothers was significantly increased at 3.04 (95% confidence interval: 2.59-3.56). The corresponding odds ratio for asthma in children of asthmatic fathers was increased at 2.44 (2.14-2.79). When comparing the odds ratios, maternal asthma conferred greater risk of disease than did paternal asthma (3.04 vs. 2.44, p = 0.037). When analyzing the studies in which asthma was diagnosed by a physician the odds ratios were attenuated and no significant differences were observed (2.85 vs. 2.48, N = 18, p = 0.37). Similarly, no significant differences were observed between maternal and paternal odds ratios when analyzing the studies in which the patient population was 5 years or older (3.15 vs. 2.60, p = 0.14). However, in all cases the trend remained the same, that maternal asthma was a greater risk factor for asthma than paternal.
The results show that maternal asthma increases offspring disease risk to a greater extent than paternal disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The noticeable phenomenon of an increased frequency of immune-inflammatory disorders, in the industrialized world, has led to the implication of parasitic infections in the pathophysiology of these diseases. Most of the studies investigated the infection connection to allergy have centered on helminthes. Parasitic helminthes are a group of metazoans that are evolutionary diverse, yet converge to evolve common modes of immunomodulation. Helminth immuneregulation is mainly mediated by a regulatory response including Treg and Breg cells with alternatively-activated macrophages. There is increasing evidence for a causal relationship between helminth infection and allergic hyporesponsiveness, however, conflicting data are still generating. The helminth immunoregulation seems to be species-specific and phase-specific. It depends on the stage of the clinical disease which correlates with a corresponding parasitic stage (egg, larva or mature adult). Here, we review the cellular and molecular mechanisms utilized by helminthes to manipulate the immune system and the consequent bystander immunomodulatory responses towards environmental allergens. We especially focus on parasitic species and molecules involved in the modulation of allergic disorders and summarize the experimental and clinical trials using them as therapeutic agents. We also discuss the potentials and obstacles, for helminthes and/or their derived molecules, to emerge as novel therapeutic modalities
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological studies suggest that allergy risk is preferentially transmitted through mothers. This can be due to genomic imprinting, where the phenotype effect of an allele depends on its parental origin, or due to maternal effects reflecting the maternal genome's influence on the child during prenatal development. Loss-of-function mutations in the filaggrin gene (FLG) cause skin barrier deficiency and strongly predispose to atopic dermatitis (AD). We investigated the 4 most prevalent European FLG mutations (c.2282del4, p.R501X, p.R2447X, and p.S3247X) in two samples including 759 and 450 AD families. We used the multinomial and maximum-likelihood approach implemented in the PREMIM/EMIM tool to model parent-of-origin effects. Beyond the known role of FLG inheritance in AD (R1meta-analysis = 2.4, P = 1.0 x 10-36), we observed a strong maternal FLG genotype effect that was consistent in both independent family sets and for all 4 mutations analysed. Overall, children of FLG-carrier mothers had a 1.5-fold increased AD risk (S1 = 1.50, Pmeta-analysis = 8.4 x 10-8). Our data point to two independent and additive effects of FLG mutations: i) carrying a mutation and ii) having a mutation carrier mother. The maternal genotype effect was independent of mutation inheritance and can be seen as a non-genetic transmission of a genetic effect. The FLG maternal effect was observed only when mothers had allergic sensitization (elevated allergen-specific IgE antibody plasma levels), suggesting that FLG mutation-induced systemic immune responses in the mother may influence AD risk in the child. Notably, the maternal effect reported here was stronger than most common genetic risk factors for AD recently identified through genome-wide association studies (GWAS). Our study highlights the power of family-based studies in the identification of new etiological mechanisms and reveals, for the first time, a direct influence of the maternal genotype on the offspring's susceptibility to a common human disease.
    PLoS Genetics 03/2015; 11(3):e1005076. DOI:10.1371/journal.pgen.1005076 · 8.17 Impact Factor
  • Source
    Journal of Reproductive Immunology 03/2014; 101-102:28-29. DOI:10.1016/j.jri.2013.12.097 · 2.37 Impact Factor

Full-text (3 Sources)

Available from
May 26, 2014