Article

Breaking Tolerance in a Mouse Model of Multiple Myeloma by Chemoimmunotherapy

Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
Advances in Cancer Research (Impact Factor: 4.26). 01/2010; 107:1-37. DOI: 10.1016/S0065-230X(10)07001-6
Source: PubMed

ABSTRACT A unique mouse model of multiple myeloma (MM), namely 5T2MM-bearing mouse, was useful for elucidating the pathophysiological mechanisms underlying the disease. Increased accumulation of suppressive CD4(+)CD25(High)Foxp3(+) regulatory T cells (Tregs) was observed in the thymus and lymphoid peripheral organs during disease progression. Adoptive transfer of Tregs, but not other thymocytes, from 5T2MM-bearing mice led to increased progression of disease manifestations in young syngeneic mice. Depletion of Tregs, a proposed strategy in cancer immunotherapy, was tested using cyclophosphamide (CYC), an alkylating agent with selective cytotoxicity. Both low- and high-dose CYC, administered to sick mice with hind limb paralysis, caused the paralysis to disappear, the plasma tumor cells in the bone marrow (BM) cavity to be replaced by normal cell populations, and the survival of the mice to be significantly prolonged. Low-dose CYC, which selectively depletes Tregs, decreased MM incidence, in contrast to high-dose CYC, which was generally cytotoxic, and did not reduce MM incidence. In contrast, low-dose CYC induced Tregs to become susceptible to apoptosis by downregulating Bcl-xL and CTLA-4 in these cells, and by decreasing the production of IL-2 by effector CD4 cells. This treatment consequently triggered the recovery of IFN-gamma-producing natural killer T cells and the maturation of dendritic cells. Transient gradual depletion of Tregs in low-dose CYC-treated 5T2MM mice was maintained beyond 45 days. Thus, less frequent injections of low-dose CYC enabled us to recruit compatible immune-derived cells that would reduce tumor load and delay or prevent tumor recurrence, hence breaking immune tolerance toward MM tumor cells.

0 Followers
 · 
63 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim:To study the antitumor effect of anti-NprPSA monoclonal antibody (mAb) in combination with ManNPr, a precursor of N-propionyl PSA, in multiple myeloma (MM), and to explore the mechanisms of the action.Methods:Human multiple myeloma cell line RPMI-8226 was tested. The cells were pre-treated with ManNPr (1, 2, and 4 mg/mL), and then incubated with anti-NprPSA mAb (1 mg/mL). Cell apoptosis in vitro was detected using MTT assay and flow cytometry. BALB/c nude mice were inoculated sc with RPC5.4 cells. On 5 d after the injection, the mice were administered sc with anti-NprPSA mAb (200 μg/d) and ManNPr (5 mg/d) for 8 d. The tumor size and body weight were monitored twice per week. TUNEL assay was used for detecting apoptosis in vivo. The apoptotic pathway involved was examined using Western blot analysis and caspase inhibitor.Results:Treatment of RPMI-8226 cells with anti-NprPSA mAb alone failed to inhibit cell growth in vitro. In RPMI-8226 cells pretreated with ManNPr, however, the mAb significantly inhibited the cell proliferation, decreased the viability, and induced apoptosis, which was associated with cleavage of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase. In the mouse xenograft model, treatment with the mAb in combination with ManNPr significantly inhibited the tumor growth, and induced significant apoptosis as compared to treatment with the mAb alone. Moreover, apoptosis induced by the mAb in vivo resulted from the activation of the caspases and poly(ADP-ribose) polymerase.Conclusion:The anti-NprPSA mAb in combination with ManNPr is an effective treatment for in vitro and in vivo induction of apoptosis in multiple myeloma.
    Acta Pharmacologica Sinica 11/2012; 33(12). DOI:10.1038/aps.2012.91 · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The majority of multiple myeloma patients relapse with the current treatment strategies, raising the need for alternative therapeutic approaches. Cellular immunotherapy is a rapidly evolving field and currently being translated into clinical trials with encouraging results in several cancer types, including multiple myeloma. Murine multiple myeloma models are of critical importance for the development and refinement of cellular immunotherapy. In this review, we summarize the immune cell changes that occur in multiple myeloma patients and we discuss the cell-based immunotherapies that have been tested in multiple myeloma, with a focus on murine models.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 08/2014; DOI:10.1016/j.bbcan.2014.08.001 · 7.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early phase clinical trials targeting the programmed death receptor-1/ligand-1 (PD-1/PD-L1) pathway to overcome tumor-mediated immunosuppression have reported promising results for a variety of cancers. This pathway appears to play an important role in the failure of immune reactivity to malignant plasma cells in multiple myeloma patients, as the tumor cells express relatively high levels of PD-L1, and T cells show increased PD-1 expression. In the current study, we demonstrate that PD-1/PD-L1 blockade with a PD-L1-specific Ab elicits rejection of a murine myeloma when combined with lymphodepleting irradiation. This particular combined approach by itself has not previously been shown to be efficacious in other tumor models. The antitumor effect of lymphodepletion/anti-PD-L1 therapy was most robust when tumor Ag-experienced T cells were present either through cell transfer or survival after nonmyeloablative irradiation. In vivo depletion of CD4 or CD8 T cells completely eliminated antitumor efficacy of the lymphodepletion/anti-PD-L1 therapy, indicating that both T cell subsets are necessary for tumor rejection. Elimination of myeloma by T cells occurs relatively quickly as tumor cells in the bone marrow were nearly nondetectable by 5 d after the first anti-PD-L1 treatment, suggesting that antimyeloma reactivity is primarily mediated by preactivated T cells, rather than newly generated myeloma-reactive T cells. Anti-PD-L1 plus lymphodepletion failed to improve survival in two solid tumor models, but demonstrated significant efficacy in two hematologic malignancy models. In summary, our results support the clinical testing of lymphodepletion and PD-1/PD-L1 blockade as a novel approach for improving the survival of patients with multiple myeloma.
    The Journal of Immunology 04/2013; 190(11). DOI:10.4049/jimmunol.1202005 · 5.36 Impact Factor