Article

Eupafolin, a flavonoid isolated from Artemisia princeps, induced apoptosis in human cervical adenocarcinoma HeLa cells.

Department of Biomedical Science, College of Medical Science, Kyung-Hee University, Seoul, South Korea.
Molecular Nutrition & Food Research (Impact Factor: 4.31). 09/2010; 54(9):1318-28. DOI: 10.1002/mnfr.200900305
Source: PubMed

ABSTRACT Although eupafolin, a flavone found in Artemisia princeps Pampanini, has been shown to inhibit the growth of several human cancer cells, its mode of action is poorly understood. In this study, we investigated the pro-apoptotic activities of eupafolin in human cervical carcinoma HeLa cells. It was found that eupafolin induced apoptosis in a dose-dependent manner, as evidenced by DNA fragmentation and the accumulation of positive cells for annexin V. In addition, eupafolin triggered the activations of caspases-3, -6, -7, -8, and -9 and the cleavages of their substrates, such as, poly (ADP-ribose) polymerase and lamin A/C. Furthermore, treatment with eupafolin resulted in a loss of mitochondrial membrane potential (DeltaPsi(m)), increased the release of cytochrome c to the cytosol, and altered the expression levels of B-cell lymphoma 2 (Bcl-2) family proteins. Interestingly, caspase-8, an initiator caspase, was activated after the loss of DeltaPsi(m) and the activations of caspases-3 and -9. Moreover, treatment with z-DEVD-fmk (a specific caspase-3 inhibitor) and the overexpression of Bcl-2 prevented eupafolin-stimulated caspase-8 activation. Altogether, these results suggest that the eupafolin-induced apoptosis in HeLa cells is mediated by caspase-dependent pathways, involving caspases-3, -9, and -8, which are initiated by the Bcl-2-dependent loss of DeltaPsi(m).

1 Bookmark
 · 
80 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatase and tensin homolog (PTEN) loss or mutation consistently activates the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway, which contributes to the progression and invasiveness of prostate cancer. Furthermore, the PTEN/PI3-K/Akt and Ras/MAPK pathways cooperate to promote the epithelial–mesenchymal transition (EMT) and metastasis initiated from prostate stem/progenitor cells. For these reasons, the PTEN/PI3-K/Akt pathway is considered as an attractive target for both chemoprevention and chemotherapy. Herein we report that eupafolin, a natural compound found in common sage, inhibited proliferation of prostate cancer cells. Protein content analysis indicated that phosphorylation of Akt and its downstream kinases was inhibited by eupafolin treatment. Pull-down assay and in vitro kinase assay results indicated that eupafolin could bind with PI3-K and attenuate its kinase activity. Eupafolin also exhibited tumor suppressive effects in vivo in an athymic nude mouse model. Overall, these results suggested that eupafolin exerts antitumor effects by targeting PI3-K. © 2014 Wiley Periodicals, Inc.
    Molecular Carcinogenesis 04/2014; · 4.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enterovirus 71 (EV71) and coxsackievirus A16 (CoxA16) are main pathogens of hand-foot-and-mouth disease, occasionally causing aseptic meningitis and encephalitis in tropical and subtropical regions. Kalanchoe gracilis, Da-Huan-Hun, is a Chinese folk medicine for treating pain and inflammation, exhibiting antioxidant and anti-inflammatory activities. Our prior report (2012) cited K. gracilis leaf extract as moderately active against EV71 and CoxA16. This study further rates antienteroviral potential of K. gracilis stem (KGS) extract to identify potent antiviral fractions and components. The extract moderately inhibits viral cytopathicity and virus yield, as well as in vitro replication of EV71 (IC50 = 75.18 μ g/mL) and CoxA16 (IC50 = 81.41 μ g/mL). Ethyl acetate (EA) fraction of KGS extract showed greater antiviral activity than that of n-butanol or aqueous fraction: IC50 values of 4.21 μ g/mL against EV71 and 9.08 μ g/mL against CoxA16. HPLC analysis, UV-Vis absorption spectroscopy, and plaque reduction assay indicate that eupafolin is a vital component of EA fraction showing potent activity against EV71 (IC50 = 1.39 μ M) and CoxA16 (IC50 = 5.24 μ M). Eupafolin specifically lessened virus-induced upregulation of IL-6 and RANTES by inhibiting virus-induced ERK1/2, AP-1, and STAT3 signals. Anti-enteroviral potency of KGS EA fraction and eupafolin shows the clinical potential against EV71 and CoxA16 infection.
    Evidence-based Complementary and Alternative Medicine 01/2013; 2013:591354. · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation, decreased reactive oxygen species (ROS) generation, and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-jun and c-fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPKs phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases.
    Toxicology and Applied Pharmacology 06/2014; · 3.98 Impact Factor