Detection of adduct on tyrosine 411 of albumin in humans poisoned by dichlorvos.

Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.
Toxicological Sciences (Impact Factor: 4.48). 07/2010; 116(1):23-31. DOI: 10.1093/toxsci/kfq117
Source: PubMed

ABSTRACT Studies in mice and guinea pigs have shown that albumin is a new biomarker of organophosphorus toxicant (OP) and nerve agent exposure. Our goal was to determine whether OP-labeled albumin could be detected in the blood of humans exposed to OP. Blood from four OP-exposed patients was prepared for mass spectrometry analysis by digesting 0.010 ml of serum with pepsin and purifying the labeled albumin peptide by offline high performance liquid chromatography. Dimethoxyphosphate-labeled tyrosine 411 was identified in albumin peptides VRY(411)TKKVPQVSTPTL and LVRY(411)TKKVPQVSTPTL from two patients who had attempted suicide with dichlorvos. The butyrylcholinesterase activity in these serum samples was inhibited 80%. A third patient whose serum BChE activity was inhibited 8% by accidental inhalation of dichlorvos had undetectable levels of adduct on albumin. A fourth patient whose BChE activity was inhibited 60% by exposure to chlorpyrifos had no detectable adduct on albumin. This is the first report to demonstrate the presence of OP-labeled albumin in human patients. It is concluded that tyrosine 411 of human albumin is covalently modified in the serum of humans poisoned by dichlorvos and that the modification is detectable by mass spectrometry. The special reactivity of tyrosine 411 with OP suggests that other proteins may also be modified on tyrosine. Identification of other OP-modified proteins may lead to an understanding of neurotoxic symptoms that appear long after the initial OP exposure.


Available from: Florian Nachon, May 22, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toxic organophosphorus compounds (e.g., pesticides and nerve agents) are known to react with nucleophilic side chains of different amino acids (phosphylation), thus forming adducts with endogenous proteins. Most often binding to serine, tyrosine, or threonine residues is described as being of relevance for toxicological effects (e.g., acetylcholinesterase and neuropathy target esterase) or as biomarkers for post-exposure analysis (verification, e.g., albumin and butyrylcholinesterase). Accordingly, identification of novel protein targets might be beneficial for a better understanding of the toxicology of these compounds, revealing new bioanalytical verification tools, and improving knowledge on chemical reactivity. In the present study, we investigated the reaction of ubiquitin (Ub) with the V-type nerve agents Chinese VX, Russian VX, and VX in vitro. Ub is a ubiquitous protein with a mass of 8564.8 Da present in the extra- and intracellular space that plays an important physiological role in several essential processes (e.g., proteasomal degradation, DNA repair, protein turnover, and endocytosis). Reaction products were analyzed by matrix-assisted laser desorption/ionization-time-of-flight- mass spectrometry (MALDI-TOF MS) and μ-high-performance liquid chromatography online coupled to UV-detection and electrospray ionization MS (μHPLC-UV/ESI MS). Our results originally document that a complex mixture of at least mono-, di, and triphosphonylated Ub adducts was produced. Surprisingly, peptide mass fingerprint analysis in combination with MALDI and ESI MS/MS revealed that phosphonylation occurred with high selectivity in at least 6 of 7 surface-exposed lysine residues that are essential for the biological function of Ub. These reaction products were found not to age. In addition, we herein report for the first time that phosphonylation induced intramolecular cyclization by formation of an isopeptide bond between the ε-amino group of a formerly phosphonylated lysine and the side chain of an adjacent acidic glutamic acid residue.
    Analytical and Bioanalytical Chemistry 03/2014; 406(21). DOI:10.1007/s00216-014-7706-y · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The toxicity of dichlorvos (DDVP), an organophosphate (OP) pesticide, classically results from modification of the serine in the active sites of cholinesterases. However, DDVP also forms adducts on unrelated targets such as transferrin and albumin, suggesting that DDVP could cause perturbations in cellular processes by modifying non-cholinesterase targets. Here, we identify novel DDVP-modified targets in lysed human hepatocyte-like cells (HepaRG) using a direct liquid chromatography-mass spectrometry (LC-MS) assay of cell lysates incubated with DDVP or using a competitive pull-down experiments with a biotin-linked organophosphorus compound (10-fluoroethoxyphosphinyl-N-biotinamidopentyldecanamide; FP-biotin), which competes with DDVP for similar binding sites. We show that DDVP forms adducts to several proteins important for the cellular metabolic pathways and differentiation, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and actin. We validated the results using purified proteins and enzymatic assays. The study not only identified novel DDVP-modified targets but also suggested that the modification directly inhibits the enzymes. The current approach provides information for future hypothesis-based studies to understand the underlying mechanism of toxicity of DDVP in non-neuronal tissues.
    Journal of Proteome Research 06/2014; 13(8). DOI:10.1021/pr5000076 · 5.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Organophosphorus nerve agent (OPNA) adducts to butyrylcholinesterase (BChE) can be used to confirm exposure in humans. A highly accurate method to detect G- and V-series OPNA adducts to BChE in 75 μL of filtered blood, serum, or plasma has been developed using immunomagnetic separation (IMS) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). The reported IMS method captures > 88 % of the BChE in a specimen and corrects for matrix effects on peptide calibrators. The optimized method has been used to quantify baseline BChE levels (unadducted and OPNA-adducted) in a matched-set of serum, plasma, and whole blood (later processed in-house for plasma content) from 192 unexposed individuals to determine the interchangeability of the tested matrices. The results of these measurements demonstrate the ability to accurately measure BChE regardless of the format of the blood specimen received. Criteria for accepting or denying specimens were established through a series of sample stability and processing experiments. The results of these efforts are an optimized and rugged method that is transferrable to other laboratories and an increased understanding of the BChE biomarker in matrix.
    Analytical and Bioanalytical Chemistry 03/2014; 406(21). DOI:10.1007/s00216-014-7718-7 · 3.58 Impact Factor