Article

Hydrotreating of waste cooking oil for biodiesel production. Part I: Effect of temperature on product yields and heteroatom removal.

Chemical Process Engineering Research Institute - CPERI, Centre for Research and Technology Hellas - CERTH, Thermi-Thessaloniki, Greece.
Bioresource Technology (Impact Factor: 5.04). 09/2010; 101(17):6651-6. DOI: 10.1016/j.biortech.2010.03.081
Source: PubMed

ABSTRACT Hydrotreating of waste cooking oil (WCO) was studied as a process for biofuels production. The hydrotreatment temperature is the most dominant operating parameter which defines catalyst performance as well as catalyst life. In this analysis, a hydrotreating temperature range of 330-398 degrees C was explored via a series of five experiments (330, 350, 370, 385 and 398 degrees C). Several parameters were considered for evaluating the effect of temperature including product yields, conversion, selectivity (diesel and gasoline), heteroatom removal (sulfur, nitrogen and oxygen) and saturation of double bonds. For all experiments the same commercial hydrotreating catalyst was utilized, while the remaining operating parameters were constant (pressure=1200 psig, LHSV=1.0 h(-1), H(2)/oil ratio=4000 scfb, liquid feed=0.33 ml/min and gas feed=0.4 scfh). It was observed that higher reactor temperatures are more attractive when gasoline production is of interest, while lower reaction temperatures are more suitable when diesel production is more important.

2 Bookmarks
 · 
187 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80bar; LHSV: 0.25-5.0h(-1); and H2/oil ratio: 250-2000N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed.
    Bioresource Technology 01/2014; 158:81–90. · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, three different types of hydrogels i.e., (poly (-acrylamide)/alginate (P (AAm)/Alg), poly (acrylamide-N-isopropylacrylamide) (P (AAm-NIPA)), and poly (acrylamide-N-isopropylacrylamide)/alginate (P (AAm-NIPA)/Alg)) were synthesized by acrylamide, alginate, and N-isopropylacrylamide for the entrapment of laccase. The hydrogel-entrapped and free laccase showed optimum temperature of 50 °C for the oxidation of ABTS, but the entrapped laccase showed high temperature, pH, and storage stability as compared to the free enzyme. The K m values of free laccase, (P (AAm)/Alg)-L, (P (AAm-NIPA))-L, and (P (AAm-NIPA)/Alg)-L were found to be 0.13, 0.28, 0.33, and 0.50 mM, respectively. The V max values of free laccase, (P (AAm)/Alg)-L, (P (AAm-NIPA))-L, and (P (AAm-NIPA)/Alg)-L were found to be 22.22 × 10(2), 5.55 × 10(2), 5.0 × 10(2), and 4.54 × 10(2) mM/min, respectively. The entrapped laccase hydrogels were used for the decolorization of Reactive Violet 1 dye, with 39 to 45 % decolorization efficiency till the 10th cycle.
    Applied biochemistry and biotechnology 04/2014; · 1.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This chapter aims to overview the logistics of bioenergy systems, focusing on the economic and sustainability implications of the different transport, processing and energy conversion systems for heat and power generation. The main research trends of biomass processing, decoupling of treatment and energy conversion, integration into existing infrastructures and energy systems, and optimal location and sizing of bioenergy facilities are reviewed. For this purpose, a description of supply chains modelling and research trends, technical options and related cost figures for the various steps of the biomass supply chains are overviewed. Moreover, the opportunities to integrate bioenergy into existing energy systems are explored, investigating the use of biofuels in combination with fossil fuels into existing plants and networks. Finally, the main research trends in the optimization of scale and location of the different steps of bioenergy routes are overviewed.
    edited by Zhen Fang, 10/2013; intech., ISBN: 978-953-51-0950-1

Full-text (2 Sources)

View
13 Downloads
Available from
May 17, 2014

Stella Bezergianni