Development of a micro-computed tomography-based image-guided conformal radiotherapy system for small animals.

Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5847, USA.
International journal of radiation oncology, biology, physics (Impact Factor: 4.18). 09/2010; 78(1):297-305. DOI: 10.1016/j.ijrobp.2009.11.008
Source: PubMed

ABSTRACT To report on the physical aspects of a system in which radiotherapy functionality was added to a micro-computed tomography (microCT) scanner, to evaluate the accuracy of this instrument, and to and demonstrate the application of this technology for irradiating tumors growing within the lungs of mice.
A GE eXplore RS120 microCT scanner was modified by the addition of a two-dimensional subject translation stage and a variable aperture collimator. Quality assurance protocols for these devices, including measurement of translation stage positioning accuracy, collimator aperture accuracy, and collimator alignment with the X-ray beam, were devised. Use of this system for image-guided radiotherapy was assessed by irradiation of a solid water phantom as well as of two mice bearing spontaneous MYC-induced lung tumors. Radiation damage was assessed ex vivo by immunohistochemical detection of gammaH2AX foci.
The positioning error of the translation stage was found to be <0.05 mm, whereas after alignment of the collimator with the X-ray axis through adjustment of its displacement and rotation, the collimator aperture error was <0.1 mm measured at isocenter. Computed tomography image-guided treatment of a solid water phantom demonstrated target localization accuracy to within 0.1 mm. Gamma-H2AX foci were detected within irradiated lung tumors in mice, with contralateral lung tissue displaying background staining.
Addition of radiotherapy functionality to a microCT scanner is an effective means of introducing image-guided radiation treatments into the preclinical setting. This approach has been shown to facilitate small-animal conformal radiotherapy while leveraging existing technology.

Download full-text


Available from: Phuoc T Tran, Jun 22, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response.
    Translational oncology 04/2012; 5(2):77-84. DOI:10.1593/tlo.11316 · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small animal irradiation provides an important tool used by preclinical studies to assess and optimize new treatment strategies such as stereotactic ablative radiotherapy. Characterization of radiation beams that are clinically and geometrically scaled for the small animal model is uniquely challenging for orthovoltage energies and minute field sizes. The irradiator employs a commercial x-ray device (XRAD 320, Precision x-ray, Inc.) with a custom collimation system to produce 1-10 mm diameter beams and a 50 mm reference beam. Absolute calibrations were performed using the AAPM TG-61 methodology. Beam's half-value layer (HVL) and timer error were measured with an ionization chamber. Percent depth dose (PDD), output factors (OFs) and off-axis ratios were measured using radiochromic film, a diode and a pinpoint ionization chamber at 19.76 and 24.76 cm source-to-surface distance (SSD). PDD measurements were also compared with Monte Carlo (MC) simulations. In-air and in-water absolute calibrations for the reference 50 mm diameter collimator at 19.76 cm SSD were measured as 20.96 and 20.79 Gy min(-1), respectively, agreeing within 0.8%. The HVL at 250 kVp and 15 mAs was measured to be 0.45 mm Cu. The reference field PDD MC simulation results agree with measured data within 3.5%. PDD data demonstrate typical increased penetration with increasing field size and SSD. For collimators larger than 5 mm in diameter, OFs measured using film, an ion chamber and a diode were within 3% agreement.
    Physics in Medicine and Biology 03/2011; 56(8):2585-99. DOI:10.1088/0031-9155/56/8/016 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An x-ray image-guided small animal stereotactic irradiator was developed and characterized to enable tumor visualization and accurate target localization for small field, high dose irradiation. The system utilizes a custom collimation system, a motorized positioning system (x, y, θ), a digital imaging panel and operating software, and is integrated with a commercial x-ray unit. The essential characteristics of the irradiator include small radiation fields (1-10 mm), high dose rate (>10 Gy min(-1)) and submillimeter target localization. The software enables computer-controlled image acquisition, stage motion and target localization providing simple and precise automated target localization. The imaging panel was characterized in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and spatial resolution. Overall localization accuracy and precision were assessed. SNR, CNR and spatial resolution are 24 dB, 21 dB and 2.8 lp mm(-1), respectively, and localization accuracy is approximately 65 µm with 6 µm precision. With the aid of image guidance, system performance was subsequently used to evaluate radiation response in a rat orthotopic lung tumor effectively sparing normal tissues and in a mouse normal lung. The capabilities of 3D treatment and cone-beam computed tomography are presented for 3D localization and delivery as a work in progress.
    Physics in Medicine and Biology 12/2010; 55(23):7345-62. DOI:10.1088/0031-9155/55/23/011 · 2.92 Impact Factor