Article

Indirect effect of IGF2 intron3 g.3072G>A mutation on prolificacy in sows.

Department of Biosystems, KULeuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium.
Animal Genetics (Impact Factor: 2.21). 10/2010; 41(5):493-8. DOI: 10.1111/j.1365-2052.2010.02040.x
Source: PubMed

ABSTRACT A QTL located in the paternally expressed insulin-like growth factor 2 (IGF2) gene is known to increase muscle growth and reduce fat deposition in pigs. This makes the QTL in IGF2 a good marker for use in pig breeding programmes. However, care has to be taken as it is postulated that increased leanness and lowered fat deposition may have a negative effect on the prolificacy and longevity of sows. Selection of sire and dam lines for different alleles of the mutation in the paternally imprinted IGF2 gene could actually provide a solution to this problem. Therefore, in this study, the effect of the IGF2 QTL on prolificacy-related traits in sows was investigated. It was found that the paternal IGF2 wild-type allele was associated with higher reproduction performance in the sow. Moreover, it was also examined whether the difference in prolificacy in sows could be a consequence of differential IGF2 expression in the ovarian follicles of the sow or whether it is mainly a secondary effect caused by differences in fatness traits. Therefore, IGF2 expression was measured in follicles of different sizes from sows with different genotypes for the paternal IGF2 allele. It was observed that, however, while the size of the follicles was associated with follicular IGF2 expression level, the IGF2 genotype was not. It could be concluded that the difference in prolificacy of sows with a different paternal IGF2 genotype could be a secondary effect, resulting from differences in fat deposition.

0 Followers
 · 
121 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied whether two IGF2 transcripts in common carp are similar to those found in zebrafish. The full-length IGF2a cDNA contains a 5'-terminal untranslated region (UTR) of 105 bp, a 3'-terminal UTR of 1358 bp and an open reading frame of 612 bp, which encodes a 206-amino acid protein. A 6614-bp full-length IGF2a DNA molecule, including the 5'-flanking region, was isolated. Genomic DNA structure analysis revealed that the IGF2a gene contains four exons and three introns. Bioinformatics analysis indicated that the proteins encoded by IGF2a genes in common carp have one signal peptide and one apparent transmembrane region. Bootstrapping was performed 1000 times to obtain support values for each branch. The common carp IGF2a were clustered in one group, while the outgroup (common carp IGF1) clustered in another group. We identified two new single nucleotide polymorphisms in intron 2 of the gene. One polymorphism, A/N, can be found only in the Huanghe carp. The other polymorphism, C/N, can be found in both male Huanghe carp × female Heilongjiang carp and male Huanghe carp × female Jian carp. The second polymorphism, C/N, is primarily transferred from the male and may be related to heterosis.
    Genetics and molecular research: GMR 01/2012; 11(2):1327-40. DOI:10.4238/2012.May.15.3 · 0.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to test for the existence of causative genetic variation affecting body composition traits within or adjacent to the porcine insulin-like growth factor 2 (IGF2) gene beyond the known IGF2-intron3-G3072A mutation. A focussed quantitative trait loci analysis using four microsatellite markers within the telomeric region of porcine chromosome 2p was conducted in a large resource population comprising 2741 F2 offspring. The analysis of two subsets of animals that were alternatively homozygous for the in3G3072A mutation provides evidence for additional genetic variation significantly contributing to the overall quantitative trait nucleotide variance within our population.
    animal 04/2011; 5(5):672-7. DOI:10.1017/S1751731110002466 · 1.78 Impact Factor
  • Source
    The Genetics of the Pig, 2 01/2011: chapter Biology and genetics of reproduction: pages 218-241; CABI, Wallingford, UK., ISBN: 978-1-84593-756-6