Neutrophils exposed to A. phagocytophilum under shear stress fail to fully activate, polarize, and transmigrate across inflamed endothelium

Department of Biomedical Engineering, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
AJP Cell Physiology (Impact Factor: 3.78). 07/2010; 299(1):C87-96. DOI: 10.1152/ajpcell.00165.2009
Source: PubMed


Anaplasma phagocytophilum is an obligate intracellular bacterium that has evolved mechanisms to hijack polymorphonuclear neutrophil (PMN) receptors and signaling pathways to bind, infect, and multiply within the host cell. E-selectin is upregulated during inflammation and is a requisite endothelial receptor that supports PMN capture, rolling, and activation of integrin-mediated arrest. Ligands expressed by PMN that mediate binding to endothelium via E-selectin include sialyl Lewis x (sLe(x))-expressing ligands such as P-selectin glycoprotein ligand-1 (PSGL-1) and other glycolipids and glycoproteins. As A. phagocytophilum is capable of binding to sLe(x)-expressing ligands expressed on PMN, we hypothesized that acute bacterial adhesion to PMN would subsequently attenuate PMN recruitment during inflammation. We assessed the dynamics of PMN recruitment and migration under shear flow in the presence of a wild-type strain of A. phagocytophilum and compared it with a strain of bacteria that binds to PMN independent of PSGL-1. Acute bacterial engagement with PMN resulted in transient PMN arrest and minimal PMN polarization. Although the wild-type pathogen also signaled activation of beta2 integrins and elicited a mild intracellular calcium flux, downstream signals including PMN transmigration and phosphorylation of p38 mitogen-activated protein kinase (MAPK) were inhibited. The mutant strain bound less well to PMN and failed to activate beta2 integrins and induce a calcium flux but did result in decreased PMN arrest and polarization that may have been partially mediated by a suppression of p38 MAPK activation. This model suggests that A. phagocytophilum binding to PMN under shear flow during recruitment to inflamed endothelium interferes with normal tethering via E-selectin and navigational signaling of transendothelial migration.

1 Follower
2 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anaplasma phagocytophilum is an obligate intracellular rickettsial pathogen transmitted by ixodid ticks. This bacterium colonizes myeloid and nonmyeloid cells and causes human granulocytic anaplasmosis--an important immunopathological vector-borne disease in the USA, Europe and Asia. Recent studies uncovered novel insights into the mechanisms of A. phagocytophilum pathogenesis and immunity. Here, we provide an overview of the underlying events by which the immune system responds to A. phagocytophilum infection, how this pathogen counteracts host immunity and the contribution of the tick vector for microbial transmission. We also discuss current scientific gaps in the knowledge of A. phagocytophilum biology for the purpose of exchanging research perspectives.
    Future Microbiology 06/2012; 7(6):719-31. DOI:10.2217/fmb.12.45 · 4.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anaplasma phagocytophilum is a tick-borne rickettsial pathogen that provokes an acute inflammatory response during mammalian infection. The illness caused by A. phagocytophilum, human granulocytic anaplasmosis, occurs irrespective of pathogen load and results instead from host-derived immunopathology. Thus, characterizing A. phagocytophilum genes that affect the inflammatory process is critical for understanding disease etiology. By using an A. phagocytophilum Himar1 transposon mutant library, we showed that a single transposon insertion into the A. phagocytophilum dihydrolipoamide dehydrogenase 1 gene (lpda1 [APH_0065]) affects inflammation during infection. A. phagocytophilum lacking lpda1 revealed enlargement of the spleen, increased splenic extramedullary hematopoiesis, and altered clinicopathological abnormalities during mammalian colonization. Furthermore, LPDA1-derived immunopathology was independent of neutrophil infection and correlated with enhanced reactive oxygen species from NADPH oxidase and nuclear factor (NF)-κB signaling in macrophages. Taken together, these findings suggest the presence of different signaling pathways in neutrophils and macrophages during A. phagocytophilum invasion and highlight the importance of LPDA1 as an immunopathological molecule.
    Infection and immunity 07/2012; 80(9):3194-205. DOI:10.1128/IAI.00532-12 · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anaplasma phagocytophilum invades neutrophils to cause the emerging infection, human granulocytic anaplasmosis. Here, we provide a focused review of the A. phagocytophilum invasin-host cell receptor interactions that promote bacterial entry and the degradative and membrane traffic pathways that the organism exploits to route nutrients to the organelle in which it resides. Because its obligatory intracellular nature hinders knock out-complementation approaches, we also discuss current methods used to study A. phagocytophilum gene function and the potential benefit of applying novel tools that have advanced studies of other obligate intracellular bacterial pathogens.
    Microbes and Infection 10/2013; 15(14-15). DOI:10.1016/j.micinf.2013.10.010 · 2.86 Impact Factor
Show more

Similar Publications