Article

Increased level of exogenous zinc induces cytotoxicity and up-regulates the expression of the ZnT-1 zinc transporter gene in pancreatic cancer cells.

Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
The Journal of nutritional biochemistry (Impact Factor: 4.29). 04/2010; 22(1):79-88. DOI: 10.1016/j.jnutbio.2009.12.001
Source: PubMed

ABSTRACT A balance between zinc uptake by ZIP (SLC39) and efflux of zinc from the cytoplasm into subcellular organelles and out of the cell by ZnT (SLC30) transporters is crucial for zinc homeostasis. It is not clear whether normal and cancerous pancreatic cells respond differently to increased extracellular zinc concentrations. Use of flow cytometry-based methods revealed that treatment with as little as 0.01 mM zinc induced significant cytotoxicity in two human ductal adenocarcinoma cell lines. In contrast, normal human pancreatic islet cells tolerated as high as 0.5 mM zinc. Insulinoma cell lines of mouse and rat origin also succumbed to high concentrations of zinc. Exposure to elevated zinc concentrations enhanced the numbers of carcinoma but not primary islet cells staining with the cell-permeable zinc-specific fluorescent dye, FluoZin-3, indicating increased zinc influx in transformed cells. Mitochondrial membrane depolarization, superoxide generation, decreased antioxidant thiols, intracellular acidosis and activation of intracellular caspases characterized zinc-induced carcinoma cell death. Only the antioxidant glutathione but not inhibitors of enzymes implicated in apoptosis or necrosis prevented zinc-induced cytotoxicity in insulinoma cells. Immunoblotting revealed that zinc treatment increased the ubiquitination of proteins in cancer cells. Importantly, zinc treatment up-regulated the expression of ZnT-1 gene in a rat insulinoma cell line and in two human ductal adenocarcinoma cell lines. These results indicate that the exposure of pancreatic cancer cells to elevated extracellular zinc concentrations can lead to cytotoxic cell death characterized by increased protein ubiquitination and up-regulation of the zinc transporter ZnT-1 gene expression.

0 Bookmarks
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zinc deficiency is a consistent phenomenon observed in patients with alcoholic liver disease, but the mechanisms have not been well defined. The objective of this study was to determine if alcohol alters hepatic zinc transporters in association with reduction of hepatic zinc levels and if oxidative stress mediates the alterations of zinc transporters. C57BL/6 mice were pair-fed with the Lieber-DeCarli control or ethanol diets for 2-, 4- or 8-week. Chronic alcohol exposure reduced hepatic zinc levels, but increased plasma and urine zinc levels, at all-time point. Hepatic zinc finger proteins, PPAR-α and HNF-4α, were down-regulated in ethanol-fed mice. Four hepatic zinc transporter proteins showed significant alterations in ethanol-fed mice compared to the controls. ZIP5 and ZIP 14 proteins were down-regulated, while ZIP7 and ZnT7 proteins were up-regulated, by ethanol exposure at all-time point. Immunohistochemical staining demonstrated that chronic ethanol exposure up-regulated cytochrome P450 2E1 and caused 4-hydroxynonenal accumulation in the liver. For the in vitro study, murine FL-83B hepatocytes were treated with 5 µM 4-hydroxynonenal or 100 µM hydrogen peroxide for 72 hours. The results from in vitro studies demonstrated that 4-hydroxynonenal treatment altered ZIP5 and ZIP7 protein abundance, and hydrogen peroxide treatment changed ZIP7, ZIP14 and ZnT7 protein abundance. These results suggest that chronic ethanol exposure alters hepatic zinc transporters via oxidative stress, which might account for ethanol-induced hepatic zinc deficiency.
    American journal of physiology. Gastrointestinal and liver physiology. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zinc plays a critical role in many biological processes. However, it is toxic at high concentrations and its homeostasis is strictly regulated by metal-responsive transcription factor 1 (MTF-1) together with many other proteins to protect cells against metal toxicity and oxidative stresses. In this paper, we used high-resolution two-dimensional gel electrophoresis (2DE) to profile global changes of the whole soluble proteome in human lung adenocarcinoma (A549) cells in response to exogenous zinc treatment for 24 h. Eighteen differentially expressed proteins were identified by MALDI TOF/TOF and MASCOT search. In addition, we used Western blotting and RT-PCR to examine the time-dependent changes in expression of proteins regulated by MTF-1 in response to Zn treatment, including the metal binding protein MT-1, the zinc efflux protein ZnT-1, and the zinc influx regulator ZIP-1. The results indicated that variations in their mRNA and protein levels were consistent with their functions in maintaining the homeostasis of zinc. However, the accumulation of ZIP-1 transcripts was down-regulated while the protein level was up-regulated during the same time period. This may be due to the complex regulatory mechanism of ZIP-1, which is involved in multiple signaling pathways. Maximal changes in protein abundance were observed at 10 h following Zn treatment, but only slight changes in protein or mRNA levels were observed at 24 h, which was the time-point frequently used for 2DE analyses. Therefore, further study of the time-dependent Zn-response of A549 cells would help to understand the dynamic nature of the cellular response to Zn stress. Our findings provide the basis for further study into zinc-regulated cellular signaling pathways.
    PLoS ONE 01/2014; 9(8):e105797. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer (ductal adenocarcinoma) remains a deadly cancer with ~85% mortality, and a 5-year survival rate of ~6% or less for the past 30 years. The factors and events associated with the development of pancreatic cancer are poorly identified. As such, effective biomarkers for early detection of malignancy are lacking. Efficacious chemotherapy once the cancer is identified does not exist. Recent clinical studies have revealed that the zinc levels are consistently and markedly decreased in adenocarcinoma as compared with normal/benign pancreatic tissue. The decreased zinc is exhibited in well-differentiated malignancy and in progressing malignancy, and also exists throughout the development of PanIN. Concurrent with the decrease in zinc, RREB1 transcription factor and ZIP3 zinc uptake transporter are downregulated. Thus, a RREB1/ZIP3/Zinc transformation appears to be an early event in the development of pancreatic cancer. We propose that this transformation is necessary to prevent the accumulation of high cellular zinc levels, which result in cytotoxic effects on the developing malignant cells. This report now demonstrates that exposure of Panc1 cells to physiological concentrations of zinc that result in increased zinc uptake and accumulation also inhibits cell proliferation. The study further shows that ZIP3 is the important transporter required for the accumulation of zinc and its inhibition of proliferation. RREB1 is identified as the positive regulator of ZIP3 expression. Therefore, the pathway of RREB1/ZIP3/Zinc and its downregulation during oncogenesis exist to prevent the accumulation of cytotoxic levels of zinc during the development and progression of the malignant cells in pancreatic adenocarcinoma.
    Cancer biology & therapy 07/2014; 15(10). · 3.29 Impact Factor

Full-text (2 Sources)

Download
195 Downloads
Available from
May 20, 2014