Enzyme technology for precision functional food ingredient processes

BioProcess Engineering Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark.
Annals of the New York Academy of Sciences (Impact Factor: 4.31). 03/2010; 1190(1):126-32. DOI: 10.1111/j.1749-6632.2009.05255.x
Source: PubMed

ABSTRACT A number of naturally occurring dietary substances may exert physiological benefits. The production of enhanced levels or particularly tailored versions of such candidate functional compounds can be targeted by enzymatic catalysis. The recent literature contains examples of enhancing bioavailability of iron via enzyme-catalyzed degradation of phytate in wheat bran, increasing diacyl-glycerol and conjugated linoleic acid levels by lipase action, enhancing the absorption of the citrus flavonoid hesperetin via rhamnosidase treatment, and obtaining solubilized dietary fiber via enzymatic modification of potato starch processing residues. Such targeted enzyme-catalyzed reactions provide new invention opportunities for designing functional foods with significant health benefits. The provision of well-defined naturally structured compounds can, moreover, assist in obtaining the much-needed improved understanding of the physiological benefits of complex natural substances.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper proposes a model to describe the effect of recycled aggregate (RA) on the chloride diffusion in recycled aggregate concrete (RAC). In this study, RAC is modeled in mesoscope as a five-phase composite material by considering the old and new interfacial transition zones (ITZs) as interphases, and the new mortar, old attached mortar and original aggregate as continuous phases. Based on the multiphase theory, new theoretical equations are derived to calculate the effective chloride diffusivity (Deff) in the modeled RAC. Using the finite element method (FEM) simulation, a parametric study has been undertaken to understand the effects of the RA volume fraction (Fra), the RA shapes, the boundary conditions, the adhesive rate of the old adhered mortar (Rrm) and the thickness of the ITZ (TITZ) on the chloride diffusivity in RAC. It is concluded that the discrepancy between the chloride diffusivities of different phases may remarkably complicate the chloride diffusion behavior in the modeled RAC. For the same volume of RAC, Deff decreases with the increase of Fra, but increases with Rrm and TITZ. The RA shape also influences the chloride concentration. Furthermore, the values of Deff calculated from theoretical equation and from the FEM are in reasonable agreement.
    Construction and Building Materials 04/2012; 29. DOI:10.1016/j.conbuildmat.2011.08.073 · 2.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phytases are phosphohydrolytic enzymes that initiate stepwise removal of phosphate from phytate. Simple-stomached species such as swine, poultry, and fish require extrinsic phytase to digest phytate, the major form of phosphorus in plant-based feeds. Consequently, this enzyme is supplemented in these species’ diets to decrease their phosphorus excretion, and it has emerged as one of the most effective and lucrative feed additives. This chapter provides a comprehensive review of the evolving course of phytase science and technology. It gives realistic estimates of the versatile roles of phytase in animal feeding, environmental protection, rock phosphorus preservation, human nutrition and health, and industrial applications. It elaborates on new biotechnology and existing issues related to developing novel microbial phytases as well as phytase-transgenic plants and animals. And it targets critical and integrated analyses on the global impact, novel application, and future demand of phytase in promoting anim...
    04/2012; 1. DOI:10.1146/annurev-animal-031412-103717
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pilocarpine is an imidazole alkaloid, found exclusively in the Pilocarpus genus, with huge pharmaceutical importance. In order to extract pilocarpine from Pilocarpus jaborandi, environmentally friendly enzyme-assisted extraction was applied. Viscozyme L, a commercially available enzyme cocktail, was used for the study. The conditions for extraction were optimized on the basis of substrates, enzymes, temperatures and pHs. Optimum conditions for extraction with the highest yield were 30 h reaction of 100 mg substance at in 40 ml of 50 mM acetic acid, pH 4. A 10% enzyme concentration was found to be the best for extraction. Total pilocarpine content after extraction was analyzed by HPLC. The total pilocarpine content () obtained from Viscozyme L treatment was 3.08-fold greater than those of the control treatment ().
    Korean Journal of Microbiology and Biotechnology 01/2013; 41(2). DOI:10.4014/kjmb.1303.03005