Monoclonal antibody-based enzyme-linked immunosorbent assays for the organophosphorus insecticide O-ethyl O-4-nitrophenyl phenylphosphonothioate (EPN).

Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea.
Journal of Agricultural and Food Chemistry (Impact Factor: 3.11). 04/2010; 58(9):5241-7. DOI: 10.1021/jf904528y
Source: PubMed

ABSTRACT This study aimed at developing competitive direct and indirect enzyme-linked immunosorbent assays (ELISAs) for the organophosphorus insecticide O-ethyl O-4-nitrophenyl phenylphosphonothioate (EPN) using a monoclonal antibody (mAb). Of the five EPN derivatives (haptens) prepared for use as an immunogen or as a competitor, two of them were used as the immunogen for the production of the mAbs. By using the antibody with the highest specificity and a coating antigen (hapten-OVA conjugate), a competitive indirect ELISA was developed, which showed an IC(50) of 2.9 ng/mL with a detection limit of 0.3 ng/mL. A competitive direct ELISA using a different antibody and an enzyme tracer was also developed, which showed an IC(50) of 0.6 ng/mL with a detection limit of 0.09 ng/mL. The mAbs in both assays showed negligible cross-reactivity with other organophosphorus pesticides. The recoveries of EPN from spiked samples determined by the developed ELISA ranged from 59 to 143%. Dilution of the samples improved the recovery. The assay performance of the present ELISAs based on the mAb was compared with that of the EPN ELISAs based on polyclonal antibodies (pAbs) that had been developed previously and was found to be better in dynamic response.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Paper chromatography was a big breakthrough in the early of 20th century but it is rarely used due to the long separation time and the diffusion on the sample spots. In this work, for the first time, a paper-based chemiluminescence (CL) analytical device combined with paper chromatography was developed for the determination of dichlorvos (DDV) in vegetables without complicated sample pretreatment. The paper chromatography separation procedure can be accomplished in 12min on a paper support (0.8×7.0cm(2)) by using 5µL sample spotted on it. After sample developing, the detection area (0.8×1.0cm(2)) was cut and inserted between two layers of water-impermeable single-sided adhesive tapes. The paper-based chip was made by attaching the middle layer of paper onto the bottom layer. Then it was covered by another tape layer, which was patterned by the cutting method to form a square hole (0.8×1.0cm(2)) in it. 10μL mixed solution of luminol and H2O2 was dropped on the detection area to produce CL. A linear relationship was obtained between the CL intensity and the concentrations of DDV in the range between 10.0ngmL(-1) and 1.0μgmL(-1)and the detection limit was 3.6ngmL(-1). Water-soluble metal ions and vitamins can be developed at different spatial locations relative to DDV, eliminating interference with DDV during detection. The paper-based chromatographic chip can be successfully used for the determination of DDV without complicated sample preparation in vegetables. This study should, therefore, be suitable for rapid and sensitive detection of trace levels of organophosphate pesticides in environmental and food samples.
    Biosensors & Bioelectronics 08/2013; 52C:76-81. · 6.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An ultrasensitive electrochemiluminescence (ECL) immunosensor was developed using PtAg@carbon nanocrystals (CNCs) as excellent labels based on carbon nanotubes-chitosan/AuNPs (CNT-CHIT/AuNPs) composite modified screen-printed carbon electrodes (SPCEs) for prostate protein antigen (PSA) detection. The CNCs were obtained simply by electro-oxidation of graphite with abundant carboxyl groups at their surfaces. The PtAg bimetallic nanocomposites with hierarchically hollow structures were fabricated through simple replacement reaction using dealloyed nanoporous silver (NPS) as both a template and reducing agent. Structure characterization was obtained by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) images. The PtAg@CNCs composites exhibit a 6 times higher ECL intensity than the pure CNCs labeled anti-PSA. The as-prepared CNT-CHIT/AuNPs composite can attach more antibody than pure CNTs. Due to the dual-amplification techniques, the concentrations of PSA were obtained in the range from 1 pg mL(-1) to 50 ng mL(-1) with a detection limit of 0.6 pg mL(-1). Finally, the as-proposed ECL immunosensor has the advantages of high sensitivity, specificity and stability and could become a promising technique for tumor marker detection.
    The Analyst 03/2012; 137(9):2112-8. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fenoxaprop-ethyl is a selective aryloxyphenoxypropionate herbicide used widely to control annual and perennial grasses. A monoclonal antibody (MAb) against fenoxaprop-ethyl (FE), designated as 3E6B9C, was produced and had very low cross-reactivity with some of its structural analogs, such as clodinafop-propargyl, diclofop-methyl, lactofen, and quizalofop-p-ethyl. An indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed. The concentration of R-(+)-fenoxaprop-ethyl (R-FE) producing 50% of inhibition (IC(50)) and the working range of icELISA were 3.1 ng/mL and 0.6-29 ng/mL, respectively. This assay is also sensitive to R-fenoxaprop, S-(-)-fenoxaprop-ethyl, and metamifop with IC(50) of 3.4, 2.7, and 3.5 ng/mL, respectively. The recoveries of R-FE in soil samples with the icELISA were 86-102%.
    Hybridoma (2005) 10/2011; 30(5):463-7. · 0.33 Impact Factor


1 Download
Available from