The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases.

Department of Internal Medicine, University of Bologna and S Orsola-Malpighi Hospital, Italy.
The Canadian journal of cardiology (Impact Factor: 3.12). 04/2010; 26(4):140-5. DOI: 10.1016/S0828-282X(10)70371-8
Source: PubMed

ABSTRACT Microparticles (MPs) are small vesicles, ranging in size from 0.1 microm to 2 microm, originating from plasma membranes of endothelial cells, platelets, leukocytes and erythrocytes. MPs can transfer antigens and receptors to cell types that are different from their cell of origin. Circulating MPs provide a procoagulant aminophospholipid surface for the assembly of the specific enzymes of coagulation. Both tissue factor and phosphatidylserine are exposed on MP outer membranes. In addition, MPs can play a significant role in vascular function and inflammation by modulating nitric oxide and prostacyclin production in endothelial cells, and stimulating cytokine release and tissue factor induction in endothelial cells, as well as monocyte chemotaxis and adherence to the endothelium. Finally, increased levels of MPs have been found in the presence of acute coronary syndromes, ischemic stroke, diabetes, systemic and pulmonary hypertension, and hypertriglyceridemia. From a practical point of view, MPs could be considered to be important markers of cardiovascular risk, as well as surrogate end points for assessing the efficacy of new drugs and therapies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia is known to induce the release of microparticles in vitro. However, few publications have addressed the role of hypoxia in vivo on circulating levels of microparticles. This randomised, controlled, crossover trial aimed to determine the effect of mild hypoxia on in vivo levels of circulating microparticles in healthy individuals. Blood was obtained from 51 healthy male volunteers (mean age of 26.9 years) at baseline altitude (490 m) and after 24 and 48 h at moderate altitude (2,590 m). The order of altitude exposure was randomised. Flow cytometry was used to assess platelet-poor plasma for levels of circulating microparticles derived from platelets, endothelial cells, leucocytes, granulocytes, monocytes, red blood cells and procoagulant microparticles. Mean (standard deviation) oxygen saturation was significantly lower on the first and second day after arrival at 2,590 m, 91.0 (2.0) and 92.0 (2.0) %, respectively, compared to 490 m, 96 (1.0) %, p < 0.001 for both comparisons. A significant decrease in the levels of procoagulant microparticles (annexin V+ -221/μl 95 % CI -370.8/-119.0, lactadherin+ -202/μl 95 % CI -372.2/-93.1), platelet-derived microparticles (-114/μl 95 % CI -189.9/-51.0) and red blood cell-derived microparticles (-81.4 μl 95 % CI -109.9/-57.7) after 48 h at moderate altitude was found. Microparticles derived from endothelial cells, granulocytes, monocytes and leucocytes were not significantly altered by exposure to moderate altitude. In healthy male individuals, mild hypobaric hypoxia, induced by a short-term stay at moderate altitude, is associated with lower levels of procoagulant microparticles, platelet-derived microparticles and red blood cell-derived microparticles, suggesting a reduction in thrombotic potential.
    Arbeitsphysiologie 02/2014; · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In patients with cerebral malaria (CM), higher levels of cell-specific microparticles (MP) correlate with the presence of neurological symptoms. MP are submicron plasma membrane-derived vesicles that express antigens of their cell of origin and phosphatidylserine (PS) on their surface, facilitating their role in coagulation, inflammation and cell adhesion. In this study, the in vivo production, fate and pathogenicity of cell-specific MP during Plasmodium berghei infection of mice were evaluated. Using annexin V, a PS ligand, and flow cytometry, analysis of platelet-free plasma from infected mice with cerebral involvement showed a peak of MP levels at the time of the neurological onset. Phenotypic analyses showed that MP from infected mice were predominantly of platelet, endothelial and erythrocytic origins. To determine the in vivo fate of MP, we adoptively transferred fluorescently labelled MP from mice with CM into healthy or infected recipient mice. MP were quickly cleared following intravenous injection, but microscopic examination revealed arrested MP lining the endothelium of brain vessels of infected, but not healthy, recipient mice. To determine the pathogenicity of MP, we transferred MP from activated endothelial cells into healthy recipient mice and this induced CM-like brain and lung pathology. This study supports a pathogenic role for MP in the aggravation of the neurological lesion and suggests a causal relationship between MP and the development of CM.
    PLoS Pathogens 03/2014; 10(3):e1003839. · 8.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously identified protein impurities in plasma-derived factor VIII (pdFVIII) products. The goal of the current experiments was to determine whether these impurities might have clinical relevance, by comparing the effects of pdFVIII and recombinant FVIII (rFVIII) products on cellular stress induction.
    04/2014; 41(2):140-4.


Available from