Article

Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis.

VBCRC Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
PLoS ONE (Impact Factor: 3.73). 01/2010; 5(4):e9983. DOI: 10.1371/journal.pone.0009983
Source: PubMed

ABSTRACT Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (> 40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r > or =0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2.

0 Bookmarks
 · 
62 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to the emerging importance of the bromodomain binding region in the study of epigenetic effectors and the vast implications for a wide variety of human disease, the bromodomain region of human ATPase family AAA+ (ATPases associated with diverse cellular activities) domain-containing protein 2 (ATAD2) was targeted for chemical synthesis. The ATAD2 bromodomain (130 aa) was divided into five strategic fragments to be assembled using native chemical ligation with a focus on maximal convergency and efficiency. The fragments were assembled with one cysteine and three thioleucine ligations, unveiling the native alanine and leucine amino acids at the ligation points following metal-free dethiylation. Synthetic highlights of the study are a photolabile dimethoxynitrobenzyl-protected glutamic acid side chain used to impede hydrolysis of the C-terminal Glu-thioester, a thiazolidine-protected thioleucine, and an efficient assembly of three fragments in a single reaction vessel with dual-mode kinetic-standard chemical ligation. With a focus on material throughput and convergency, the five peptide fragments were assembled into the native ATAD2 bromodomain region with a total of three HPLC events in 8% overall yield from the fragments.
    Proceedings of the National Academy of Sciences 02/2014; · 9.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial ovarian cancer has the highest mortality rate of all gynecological malignancies. We have shown that high RAN expression strongly correlates with high-grade and poor patient survival in epithelial ovarian cancer. However, as RAN is a small GTPase involved in two main biological functions, nucleo-cytoplasmic transport and mitosis, it is still unknown which of these functions associate with poor prognosis. To examine the biomarker value of RAN network components in serous epithelial ovarian cancer, protein expression of six specific RAN partners was analyzed by immunohistochemistry using a tissue microarray representing 143 patients associated with clinical parameters. The RAN GDP/GTP cycle was evaluated by the expression of RANBP1 and RCC1, the mitotic function by TPX2 and IMPβ, and the nucleo-cytoplasmic trafficking function by XPO7, XPOT and IMPβ. Based on Kaplan-Meier analyses, RAN, cytoplasmic XPO7 and TPX2 were significantly associated with poor overall patient survival, and RAN and TPX2 were associated with lower disease free survival in patients with high-grade serous carcinoma. Cox regression analysis revealed that RAN and TPX2 expression were independent prognostic factors for both overall and disease free survival, and that cytoplasmic XPO7 expression was a prognostic factor for overall patient survival. In this systematic study, we show that RAN and two protein partners involved in its nucleo-cytoplasmic and mitotic functions (XPO7 and TPX2, respectively) can be used as biomarkers to stratify patients based on prognosis. In particular, we reported for the first time the clinical relevance of the exportin XPO7 and showed that TPX2 expression had the strongest prognostic value. These findings suggest that protein partners in each of RAN's functions can discriminate between different outcomes in high-grade serous epithelial ovarian cancer patients. Furthermore, these proteins point to cellular processes that may ultimately be targeted to improve the survival in serous epithelial ovarian cancer.
    PLoS ONE 01/2014; 9(3):e91000. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For more than 15 years, TPX2 has been studied as a factor critical for mitosis and spindle assembly. These functions of TPX2 are attributed to its Ran-regulated microtubule-associated protein properties and to its control of the Aurora A kinase. Overexpressed in cancers, TPX2 is being established as marker for the diagnosis and prognosis of malignancies. During interphase, TPX2 resides preferentially in the nucleus where its function had remained elusive until recently. The latest finding that TPX2 plays a role in amplification of the DNA damage response, combined with the characterization of TPX2 knockout mice, open new perspectives to understand the biology of this protein. This review provides an historic overview of the discovery of TPX2 and summarizes its cytoskeletal and signaling roles with relevance to cancer therapies. Finally, the review aims to reconcile discrepancies between the experimental and pathological effects of TPX2 overexpression and advances new roles for compartmentalized TPX2.
    Cellular and Molecular Life Sciences CMLS 02/2014; · 5.62 Impact Factor

Full-text

View
1 Download
Available from