Article

Granuloma encapsulation is a key factor for containing tuberculosis infection in minipigs.

Unitat de Tuberculosi Experimental (UTE), Institut per a la Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Catalonia, Spain.
PLoS ONE (Impact Factor: 3.73). 01/2010; 5(4):e10030. DOI:10.1371/journal.pone.0010030
Source: PubMed

ABSTRACT A transthoracic infection involving a low dose of Mycobacterium tuberculosis has been used to establish a new model of infection in minipigs. The 20-week monitoring period showed a marked Th1 response and poor humoral response for the whole infection. A detailed histopathological analysis was performed after slicing the formalin-fixed whole lungs of each animal. All lesions were recorded and classified according to their microscopic aspect, their relationship with the intralobular connective network and their degree of maturity in order to obtain a dissemination ratio (DR) between recent and old lesions. CFU counts and evolution of the DR with time showed that the proposed model correlated with a contained infection, decreasing from week 9 onwards. These findings suggest that the infection induces an initial Th1 response, which is followed by local fibrosis and encapsulation of the granulomas, thereby decreasing the onset of new lesions. Two therapeutic strategies were applied in order to understand how they could influence the model. Thus, chemotherapy with isoniazid alone helped to decrease the total number of lesions, despite the increase in DR after week 9, with similar kinetics to those of the control group, whereas addition of a therapeutic M. tuberculosis fragment-based vaccine after chemotherapy increased the Th1 and humoral responses, as well as the number of lesions, but decreased the DR. By providing a local pulmonary structure similar to that in humans, the mini-pig model highlights new aspects that could be key to a better understanding tuberculosis infection control in humans.

0 0
 · 
0 Bookmarks
 · 
107 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Tuberculosis was studied using an experimental model based on the C3HeB/FeJ mouse strain, which mimics the liquefaction of caseous necrosis occurring during active disease in immunocompetent adults. Mice were intravenously infected with 2 × 10(4) Colony Forming Units of Mycobacterium tuberculosis and their histopathology, immune response, bacillary load, and survival were evaluated. The effects of the administration of drugs with anti-inflammatory activity were examined, and the C3H/HeN mouse strain was also included for comparative purposes. Massive intra-alveolar neutrophilic infiltration led to rapid granuloma growth and coalescence of lesions into superlesions. A central necrotic area appeared showing progressive cellular destruction, the alveoli cell walls being initially conserved (caseous necrosis) but finally destroyed (liquefactive necrosis). Increasing levels of pro-inflammatory mediators were detected in lungs. C3HeB/FeJ treated with anti-inflammatory drugs and C3H/HeN animals presented lower levels of pro-inflammatory mediators such as TNF-α, IL-17, IL-6 and CXCL5, a lower bacillary load, better histopathology, and increased survival compared with untreated C3HeB/FeJ. The observation of massive neutrophilic infiltration suggests that inflammation may be a key factor in progression towards active tuberculosis. On the basis of our findings, we consider that the C3HeB/FeJ mouse model would be useful for evaluating new therapeutic strategies against human tuberculosis.
    Tuberculosis (Edinburgh, Scotland) 09/2013; · 2.54 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Rational discovery of novel immunodiagnostic and vaccine candidate antigens to control bovine tuberculosis (bTB) requires knowledge of disease immunopathogenesis. However, there remains a paucity of information on the Mycobacterium bovis-host immune interactions during the natural infection. Analysis of 247 naturally PPD+ M. bovis-infected cattle revealed that 92% (n = 228) of these animals were found to display no clinical signs, but presented severe as well as disseminated bTB-lesions at post-mortem examination. Moreover, dissemination of bTB-lesions positively correlated with both pathology severity score (Spearman r = 0.48; p<0.0001) and viable tissue bacterial loads (Spearman r = 0.58; p = 0.0001). Additionally, granuloma encapsulation negatively correlated with M. bovis growth as well as pathology severity, suggesting that encapsulation is an effective mechanism to control bacterial proliferation during natural infection. Moreover, multinucleated giant cell numbers were found to negatively correlate with bacterial counts (Spearman r = 0.25; p = 0.03) in lung granulomas. In contrast, neutrophil numbers in the granuloma were associated with increased M. bovis proliferation (Spearman r = 0.27; p = 0.021). Together, our findings suggest that encapsulation and multinucleated giant cells control M. bovis viability, whereas neutrophils may serve as a cellular biomarker of bacterial proliferation during natural infection. These data integrate host granuloma responses with mycobacterial dissemination and could provide useful immunopathological-based biomarkers of disease severity in natural infection with M. bovis, an important cattle pathogen.
    PLoS ONE 01/2013; 8(1):e53884. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The two main genotypes of recognized isolates of Mycobacterium avium subsp. paratuberculosis (Map) are cattle (C) and sheep (S) strains. An experimental infection was conducted to establish the effect of Map strain on the pathogenesis of ovine paratuberculosis. Twenty-four out of thirty 1.5-month-old Assaf lambs were divided into 4 groups of 6 and infected orally with three low passage field isolates, two of S- (22G and the pigmented Ovicap49) and one of C- (764) type, and the reference K-10 strain (C type). The remaining six animals were unchallenged controls. Animals were euthanized at 150 and 390 days post-infection (dpi). Throughout the experiment, the peripheral immune response was assessed and histological and molecular (PCR) studies were conducted on samples of intestine and related lymphoid tissue. Specific antibody and IFN-gamma production was significantly higher in animals infected with the C strains, while no consistent IFN- gamma responses were observed in the S-type strain infected groups. A positive intradermal skin test response was detected in all infected groups. Lambs infected with S-type strains had granulomatous lesions restricted to the lymphoid tissue with no differences in the lesion intensity over time. In both C-type strain groups, lesions were more severe at 150 dpi while at 390 dpi lesions, characterized by well-demarcated granulomas with fibrosis, decreased in severity. Only infected lambs were positive to PCR. These results suggest that the strain of Map has a strong influence over the immune and pathological responses developed by the host. Lesions induced by C-type strains in lambs show a regressive character and tend to decrease as the infection progresses.
    Veterinary Research 01/2014; 45(1):5. · 3.43 Impact Factor

Full-text (2 Sources)

View
38 Downloads
Available from
Dec 11, 2012