Article

Connecting Genes to Brain in the Autism Spectrum Disorders

Neurogenetics Program, Neurology Department, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1769, USA.
Archives of neurology (Impact Factor: 7.01). 04/2010; 67(4):395-9. DOI: 10.1001/archneurol.2010.47
Source: PubMed

ABSTRACT The autism spectrum disorders (ASDs) are a complex group of neuropsychiatric conditions involving language, social communication, and mental flexibility. Here, we attempt to place recent genetic advances within a developmental and anatomical context. Recent progress in identifying ASD candidate genes supports involvement of multiple brain regions, including the frontal lobes, anterior temporal lobes, caudate, and cerebellum. Understanding genetic data within an anatomical context will be critical to explain how individual risk factors operate to shape phenotypic presentation in patients.

0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dermatoglyphics, ridge constellations on the hands and feet, are permanently formed by the second trimester of pregnancy. Consequently, they are considered “fossilized” evidence of a specific prenatal period. A high frequency of dermatoglyphic anomalies, or a high rate of dermatoglyphic asymmetry (discordance), is an indication of developmental instability (prenatal disturbances) prior to 24-week gestation. Most dermatoglyphic studies in psychiatry focus on adult schizophrenia. Studies on dermatoglyphic deviances and autism are sparse, include severely disturbed and intellectually retarded patients with autism, and are carried out mainly in non-Western European populations. In this study, finger print patterns, atd-angles, and palmar flexion crease patterns (PFCs) are compared between Western European adolescent teenage males, of average intellect, with Autism Spectrum Disorders (ASD; ) and typically developing adolescent teenage males (TD; ). Boys with ASD had a higher rate of discordance in their finger print patterns than TD boys. Thus, the hypothesized prenatal disturbances that play a role in the etiology of schizophrenia and severe autism might not be specific to these severe psychiatric disorders but might also be involved in the etiology of varying degrees of ASD.
    11/2014; 2014(Article ID 968134):1-6. DOI:10.1155/2014/968134
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dominance of the left hemisphere for many aspects of speech production and perception is one of the best known examples of functional hemispheric asymmetries in the human brain. Classic theories about its ontogenesis assume that it is determined by the same ontogenetic factors as handedness because the two traits are correlated to some extent. However, the strength of this correlation depends on the measures used to assess the two traits, and the neurophysiological basis of language lateralization is different from that of handedness. Therefore, we argue that although the two traits show partial pleiotropy, there is also a substantial amount of independent ontogenetic influences for each of them. This view is supported by several recent genetic and neuroscientific studies that are reviewed in the present article.
    Neuroscience & Biobehavioral Reviews 04/2014; DOI:10.1016/j.neubiorev.2014.04.008 · 10.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance imaging (MRI) of autism populations is confounded by the inherent heterogeneity in the individuals' genetics and environment, two factors difficult to control for. Imaging genetic animal models that recapitulate a mutation associated with autism quantify the impact of genetics on brain morphology and mitigate the confounding factors in human studies. Here, we used MRI to image three genetic mouse models with single mutations implicated in autism: Neuroligin-3 R451C knock-in, Methyl-CpG binding protein-2 (MECP2) 308-truncation and integrin β3 homozygous knockout. This study identified the morphological differences specific to the cerebellum, a structure repeatedly linked to autism in human neuroimaging and postmortem studies. To accomplish a comparative analysis, a segmented cerebellum template was created and used to segment each study image. This template delineated 39 different cerebellar structures. For Neuroligin-3 R451C male mutants, the gray (effect size (ES) = 1.94, FDR q = 0.03) and white (ES = 1.84, q = 0.037) matter of crus II lobule and the gray matter of the paraflocculus (ES = 1.45, q = 0.045) were larger in volume. The MECP2 mutant mice had cerebellar volume changes that increased in scope depending on the genotype: hemizygous males to homozygous females. The integrin β3 mutant mouse had a drastically smaller cerebellum than controls with 28 out of 39 cerebellar structures smaller. These imaging results are discussed in relation to repetitive behaviors, sociability, and learning in the context of autism. This work further illuminates the cerebellum's role in autism. Autism Res 2013, ●●: ●●-●●. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.
    Autism Research 02/2014; 7(1). DOI:10.1002/aur.1344 · 4.53 Impact Factor

Preview

Download
0 Downloads
Available from