vttR(A) and vttR(B) Encode ToxR Family Proteins That Mediate Bile-Induced Expression of Type Three Secretion System Genes in a Non-O1/Non-O139 Vibrio cholerae Strain

Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
Infection and immunity (Impact Factor: 3.73). 04/2010; 78(6):2554-70. DOI: 10.1128/IAI.01073-09
Source: PubMed


Strain AM-19226 is a pathogenic non-O1/non-O139 serogroup Vibrio cholerae strain that does not encode the toxin-coregulated pilus or cholera toxin but instead causes disease using a type three secretion system (T3SS). Two genes within the T3SS pathogenicity island, herein named vttR(A) (locus tag A33_1664) and vttR(B) (locus tag A33_1675), are predicted to encode proteins that show similarity to the transcriptional regulator ToxR, which is found in all strains of V. cholerae. Strains with a deletion of vttR(A) or vttR(B) showed attenuated colonization in vivo, indicating that the T3SS-encoded regulatory proteins play a role in virulence. lacZ transcriptional reporter fusions to intergenic regions upstream of genes encoding the T3SS structural components identified growth in the presence of bile as a condition that modulates gene expression. Under this condition, VttR(A) and VttR(B) were necessary for maximal gene expression. In contrast, growth in bile did not substantially alter the expression of a reporter fusion to the vopF gene, which encodes an effector protein. Increased vttR(B) reporter fusion activity was observed in a DeltavttR(B) strain background, suggesting that VttR(B) may regulate its own expression. The collective results are consistent with the hypothesis that T3SS-encoded regulatory proteins are essential for pathogenesis and control the expression of selected T3SS genes.

Download full-text


Available from: Vincent Tam, Mar 28, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vibrio Pathogenicity Island-2 (VPI-2) is a 57 kb region present in choleragenic V. cholerae isolates that is required for growth on sialic acid as a sole carbon source. V. cholerae non-O1/O139 pathogenic strains also contain VPI-2, which in addition to sialic acid catabolism genes also encodes a type 3 secretion system in these strains. VPI-2 integrates into chromosome 1 at a tRNA-serine site and encodes an integrase intV2 (VC1758) that belongs to the tyrosine recombinase family. IntV2 is required for VPI-2 excision from chromosome 1, which occurs at very low levels, and formation of a non-replicative circular intermediate. We determined the conditions and the factors that affect excision of VPI-2 in V. cholerae N16961. We demonstrate that excision from chromosome 1 is induced at low temperature and after sublethal UV-light irradiation treatment. In addition, after UV-light irradiation compared to untreated cells, cells showed increased expression of three genes, intV2 (VC1758), and two putative recombination directionality factors (RDFs), vefA (VC1785) and vefB (VC1809) encoded within VPI-2. We demonstrate that along with IntV2, the RDF VefA is essential for excision. We constructed a knockout mutant of vefA in V. cholerae N16961, and found that no excision of VPI-2 occurred, indicating that a functional vefA gene is required for excision. Deletion of the second RDF encoded by vefB did not result in a loss of excision. Among Vibrio species in the genome database, we identified 27 putative RDFs within regions that also encoded IntV2 homologues. Within each species the RDFs and their cognate IntV2 proteins were associated with different island regions suggesting that this pairing is widespread. We demonstrate that excision of VPI-2 is induced under some environmental stress conditions and we show for the first time that an RDF encoded within a pathogenicity island in V. cholerae is required for excision of the region.
    BMC Microbiology 11/2010; 10:306. DOI:10.1186/1471-2180-10-306 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AM-19226 is a pathogenic O39 serogroup Vibrio cholerae strain that lacks the typical virulence factors for colonization (toxin-coregulated pilus [TCP]) and toxin production (cholera toxin [CT]) and instead encodes a type III secretion system (T3SS). The mechanism of pathogenesis is unknown, and few effector proteins have been identified. We therefore undertook a survey of the open reading frames (ORFs) within the ∼49.7-kb T3SS genomic island to identify potential effector proteins. We identified 15 ORFs for their ability to inhibit growth when expressed in yeast and then used a β-lactamase (TEM1) fusion reporter system to demonstrate that 11 proteins were bona fide effectors translocated into HeLa cells in vitro in a T3SS-dependent manner. One effector, which we named VopX (A33_1663), is conserved only in V. cholerae and Vibrio parahaemolyticus T3SS-positive strains and has not been previously studied. A vopX deletion reduces the ability of strain AM-19226 to colonize in vivo, and the bile-induced expression of a vopX-lacZ transcriptional fusion in vitro is regulated by the T3SS-encoded transcriptional regulators VttRA and VttRB. An RLM1 yeast deletion strain rescued the growth inhibition induced by VopX expression, suggesting that VopX interacts with components of the cell wall integrity mitogen-activated protein kinase (MAPK) pathway. The collective results show that the V. cholerae T3SS encodes multiple effector proteins, one of which likely has novel activities that contribute to disease via interference with eukaryotic signaling pathways.
    Infection and immunity 03/2011; 79(4):1728-40. DOI:10.1128/IAI.01194-10 · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intestinal tract of a host exposed to extreme physiologic stress and modern medical intervention represents a relatively unexplored yet important area of infection research, given the frequency with which this site becomes colonized by highly pathogenic microorganisms that cause subsequent sepsis. Our laboratory has focused on the host tissue derived environmental cues that are released into the intestinal tract during extreme physiologic stress that induce the expression of virulence in colonizing pathogens with the goal of developing novel gut directed therapies that maintain host pathogen neutrality through the course of host stress. Here we demonstrate that maintenance of phosphate sufficiency/ abundance within the intestinal microenvironment may be considered as a universal strategy to prevent virulence activation across a broad range of pathogens that colonize the gut and cause sepsis, given that phosphate depletion occurs following stress and is a universal cue that activates the virulence of a wide variety of organisms. Using small animal models (Caenorhabditis elegans and mice) to create local phosphate depletion at sites of colonization of Pseudomonas aeruginosa, a common cause of lethal gut-derived sepsis, we demonstrate the importance of maintaining phosphate sufficiency to suppress the expression of a lethal phenotype during extreme physiologic stress. The molecular details and potential therapeutic implications are reviewed.
    Current pharmaceutical design 04/2011; 17(13):1254-60. DOI:10.2174/138161211795703771 · 3.45 Impact Factor
Show more