Article

Attenuation-emission alignment in cardiac PET/CT based on consistency conditions.

Department of Radiology, University of Washington Medical Center, 4000 15th Avenue NE, Box 357987, Seattle, Washington 98195-7987, USA.
Medical Physics (Impact Factor: 2.91). 03/2010; 37(3):1191-200. DOI: 10.1118/1.3315368
Source: PubMed

ABSTRACT In cardiac PET and PET/CT imaging, misaligned transmission and emission images are a common problem due to respiratory and cardiac motion. This misalignment leads to erroneous attenuation correction and can cause errors in perfusion mapping and quantification. This study develops and tests a method for automated alignment of attenuation and emission data.
The CT-based attenuation map is iteratively transformed until the attenuation corrected emission data minimize an objective function based on the Radon consistency conditions. The alignment process is derived from previous work by Welch et al. ["Attenuation correction in PET using consistency information," IEEE Trans. Nucl. Sci. 45, 3134-3141 (1998)] for stand-alone PET imaging. The process was evaluated with the simulated data and measured patient data from multiple cardiac ammonia PET/CT exams. The alignment procedure was applied to simulations of five different noise levels with three different initial attenuation maps. For the measured patient data, the alignment procedure was applied to eight attenuation-emission combinations with initially acceptable alignment and eight combinations with unacceptable alignment. The initially acceptable alignment studies were forced out of alignment a known amount and quantitatively evaluated for alignment and perfusion accuracy. The initially unacceptable studies were compared to the proposed aligned images in a blinded side-by-side review.
The proposed automatic alignment procedure reduced errors in the simulated data and iteratively approaches global minimum solutions with the patient data. In simulations, the alignment procedure reduced the root mean square error to less than 5 mm and reduces the axial translation error to less than 1 mm. In patient studies, the procedure reduced the translation error by > 50% and resolved perfusion artifacts after a known misalignment for the eight initially acceptable patient combinations. The side-by-side review of the proposed aligned attenuation-emission maps and initially misaligned attenuation-emission maps revealed that reviewers preferred the proposed aligned maps in all cases, except one inconclusive case.
The proposed alignment procedure offers an automatic method to reduce attenuation correction artifacts in cardiac PET/CT and provides a viable supplement to subjective manual realignment tools.

0 Bookmarks
 · 
65 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial blood flow (MBF) estimation with (82)Rubidium ((82)Rb) positron emission tomography (PET) is technically difficult because of the high spillover between regions of interest, especially due to the long positron range. We sought to develop a new algorithm to reduce the spillover in image-derived blood activity curves, using non-uniform weighted least-squares fitting. Fourteen volunteers underwent imaging with both 3-dimensional (3D) (82)Rb and (15)O-water PET at rest and during pharmacological stress. Whole left ventricular (LV) (82)Rb MBF was estimated using a one-compartment model, including a myocardium-to-blood spillover correction to estimate the corresponding blood input function Ca(t)(whole). Regional K1 values were calculated using this uniform global input function, which simplifies equations and enables robust estimation of MBF. To assess the robustness of the modified algorithm, inter-operator repeatability of 3D (82)Rb MBF was compared with a previously established method. Whole LV correlation of (82)Rb MBF with (15)O-water MBF was better (P < .01) with the modified spillover correction method (r = 0.92 vs r = 0.60). The modified method also yielded significantly improved inter-operator repeatability of regional MBF quantification (r = 0.89) versus the established method (r = 0.82) (P < .01). A uniform global input function can suppress LV spillover into the image-derived blood input function, resulting in improved precision for MBF quantification with 3D (82)Rb PET.
    Journal of Nuclear Cardiology 04/2012; 19(4):763-74. · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Positron emission tomography (PET) is considered the gold standard for measuring myocardial blood flow in vivo but it is known that respiratory motion can lead to misalignment of the PET and computed tomography (CT) data sets and introduce artifacts in the CT-based attenuation correction (AC) of images. In addition, respiratory motion blurs the PET image and degrades spatial resolution. The purpose of this study is to evaluate the combined effect of respiratory motion compensation (MC) and accurate attenuation correction on relative and absolute blood flow imaging of the heart.Methods: Dynamic (82)Rb-PET acquisitions were generated for a homogeneous tracer distribution in the heart using an anthropomorphic computer phantom and a Monte Carlo simulator. Attenuation correction was done using three different approaches in which the PET data were corrected by: (1) a respiratory-gated CT map with each respiratory phase of the PET scan corrected by its corresponding CT phase (matched); (2) a time-averaged attenuation map (avg); or (3) an attenuation map generated from the maximum CT-number of every voxel over the respiratory cycle (max). Motion compensated was done using an automated rigid-body registration algorithm that aligned all of the phases of the respiratory-gated PET data after AC. The corrected dynamic PET data were then processed by inhouse kinetic analysis software to generate 3D maps of blood flow. Polar maps of the blood-flow for each CT-AC method with and without MC were compared to the truth using a 17-segment model. The same comparison was performed on data from a pig study.Results: Motion compensation significantly reduced the segmental mean percentage error (sMPE) in all cases (p < 0.01 for matched CTAC and avg CTAC and p = 0.03 for max CTAC). MC significantly increased image uniformity in the case of matched and avg CTAC (p < 0.01, p = 0.04, respectively) with the best improvement coming for matched CTAC. Without MC, there were no significant differences between the three CTAC approaches. With MC, matched CTAC had significantly smaller mean absolute sMPE (p < 0.01 vs avg CTAC; p < 0.01 vs max CTAC) and improved uniformity (p = 0.05 vs avg CTAC; p < 0.01 vs max CTAC). The results were supported with a pig study.Conclusions: Without MC, there was no significant difference between the three CTAC methods for measuring blood flow. With MC, the matched CTAC approach was significantly better, reducing the mean difference from truth by 6% in the simulated data and improving uniformity by 5%.
    Medical Physics 02/2013; 40(2):022503. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory motion affects cardiac PET-computed tomography (CT) imaging by reducing attenuation correction (AC) accuracy and by introducing blur. The aim of this study was to compare three approaches for reducing motion-induced AC errors and evaluate the inclusion of respiratory motion correction. AC with a helical CT was compared with averaged cine and gated cine CT, as well as with a pseudo-gated CT, which was produced by applying PET-derived motion fields to the helical CT. Data-driven gating was used to produce respiratory-gated PET and CT images, and 60 NH3 PET scans were attenuation corrected with each of the CTs. Respiratory motion correction was applied to the gated and pseudo-gated attenuation-corrected PET images. Anterior and lateral wall intensity measured in attenuation-corrected PET images generally increased when PET-CT alignment improved and decreased when alignment degraded. On average, all methods improved PET-CT liver and cardiac alignment, and increased anterior wall intensity by more than 10% in 36, 33 and 25 cases for the averaged, gated and pseudo-gated CTAC PET images, respectively. However, cases were found where alignment worsened and severe artefacts resulted. This occurred in more cases and to a greater extent for the averaged and gated CT, where the anterior wall intensity reduced by more than 10% in 21 and 24 cases, respectively, compared with six cases for the pseudo-gated CT. Application of respiratory motion correction increased the average anterior and inferior wall intensity, but only 13% of cases increased by more than 10%. All methods improved average respiratory-induced AC errors; however, some severe artefacts were produced. The pseudo-gated CT was found to be the most robust method.
    Nuclear Medicine Communications 10/2013; · 1.38 Impact Factor

Full-text (2 Sources)

View
27 Downloads
Available from
May 31, 2014