Article

Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca(2+)]i.

Department of Clinical Pharmacology, College of Basic Medical Sciences, China Medical University, Shenyang, PR China.
Neurochemistry International (Impact Factor: 2.65). 04/2010; 57(4):411-20. DOI: 10.1016/j.neuint.2010.03.019
Source: PubMed

ABSTRACT Recent in vivo studies have established astrocytes as a major target for locus coeruleus activation (Bekar et al., 2008), renewing interest in cell culture studies on noradrenergic effects on astrocytes in primary cultures and calling for additional information about the expression of adrenoceptor subtypes on different types of brain cells. In the present communication, mRNA expression of alpha(1)-, alpha(2)- and beta-adrenergic receptors and their subtypes was determined in freshly isolated, cell marker-defined populations of astrocytes, NG2-positive cells, microglia, endothelial cells, and Thy1-positive neurons (mainly glutamatergic projection neurons) in murine cerebral cortex. Immediately after dissection of frontal, parietal and occipital cortex of 10-12-week-old transgenic mice, which combined each cell-type marker with a specific fluorescent signal, the tissue was digested, triturated and centrifuged, yielding a solution of dissociated cells of all types, which were separated by fluorescence-activated cell sorting (FACS). mRNA expression in each cell fraction was determined by microarray analysis. alpha(1A)-Receptors were unequivocally expressed in astrocytes and NG2-positive cells, but absent in other cell types, and alpha(1B)-receptors were not expressed in any cell population. Among alpha(2)-receptors only alpha(2A)-receptors were expressed, unequivocally in astrocytes and NG-positive cells, tentatively in microglia and questionably in Thy1-positive neurons and endothelial cells. beta(1)-Receptors were unequivocally expressed in astrocytes, tentatively in microglia, and questionably in neurons and endothelial cells, whereas beta(2)-adrenergic receptors showed tentative expression in neurons and astrocytes and unequivocal expression in other cell types. This distribution was supported by immunochemical data and its relevance established by previous studies in well-differentiated primary cultures of mouse astrocytes, showing that stimulation of alpha(2)-adrenoceptors increases glycogen formation and oxidative metabolism, the latter by a mechanism depending on intramitochondrial Ca(2+), whereas alpha(1)-adrenoceptor stimulation enhances glutamate uptake, and beta-adrenoceptor activation causes glycogenolysis and increased Na(+), K(+)-ATPase activity. The Ca(2+)- and cAMP-mediated association between energy-consuming and energy-yielding processes is emphasized.

0 Bookmarks
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI's exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all five currently used SSRIs to stimulate the 5-HT2B receptor equipotentially in cultured astrocytes has been known for several years, and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 days together with effects of anti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs.
    Frontiers in Behavioral Neuroscience 02/2015; 9:25. DOI:10.3389/fnbeh.2015.00025 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adrenergic receptors belong to the family of the G protein coupled receptors that represent important targets in the modern pharmacotherapies. Studies on different physiological and pathophysiological prop-erties of the adrenergic system have led to novel evidences and theories that suggest novel possible targeting of such system in a variety of pathologies and disorders, even beyond the classical known therapeutic possibilities. Herein, those advances have been illustrated with selected concepts and different ex-amples. Furthermore, we illustrated the applications and the therapeutic implications that such findings and advances might have in the contexts of experimental pharmacology, therapeutics and clinic. We hope that the content of this work will guide researches devoted to the adrenergic aspects that combine neu-rosciences with pharmacology.
    Neuropeptides 11/2014; DOI:10.1016/j.npep.2014.11.003 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain edema is a serious complication in ischemic stroke because even relatively small changes in brain volume can compromise cerebral blood flow or result in compression of vital brain structures on account of the fixed volume of the rigid skull. Literature data indicate that administration of either antagonists of the V1 vasopressin (AVP) receptor or the β1-adrenergic receptor are able to reduce edema or infarct size when administered after the onset of ischemia, a key advantage for possible clinical use. The present review discusses possible mechanisms, focusing on the role of NKCC1, an astrocytic cotransporter of Na+, K+, 2Cl- and water and its activation by highly increased extracellular K+ concentrations in the development of cytotoxic cell swelling. However, it also mentions that due to a 3/2 ratio between Na+ release and K+ uptake by the Na+,K+-ATPase driving NKCC1 brain extracellular fluid can become hypertonic, which may facilitate water entry across the blood-brain barrier, essential for development of edema. It shows that brain edema does not develop until during reperfusion, which can be explained by lack of metabolic energy during ischemia. V1 antagonists are likely to protect against cytotoxic edema formation by inhibiting AVP enhancement of NKCC1-mediated uptake of ions and water, whereas β1-adrenergic antagonists prevent edema formation because β1-adrenergic stimulation alone is responsible for stimulation of the Na+,K+-ATPase driving NKCC1, first and foremost due to decrease in extracellular Ca2+ concentration. Inhibition of NKCC1 also has adverse effects, e.g. on memory and the treatment should probably be of shortest possible duration.
    Current Neuropharmacology 07/2014; 12(4). DOI:10.2174/1570159X12666140828222723 · 2.35 Impact Factor

Full-text (2 Sources)

Download
91 Downloads
Available from
May 23, 2014