Article

Genetically Engineered Mesenchymal Stem Cells Stably Expressing

Iranian Journal of Basic Medical Sciences 01/2010;
Source: DOAJ

ABSTRACT Objective(s)Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that are capable of differentiating into and contribute to the regeneration of mesenchymal tissues. Human mesenchymal stem cells (hMSCs) are ideal targets in cell transplantation and tissue engineering. Enhanced green fluorescent protein (EGFP) has been an important reporter gene for gene therapy. The aim of this study was establishment of MSCs expressing GFP. Materials and MethodsMSCs were isolated and characterized by Immunophenotyping. The pEGFP-N1 plasmid was extracted from previously transformed Escherichia. coli cells and transfected into MSCs using FuGENE HD transfection reagent. Stable cells were established in the presence of geneticin. Expression of GFP was detected by RT-PCR, western blot analysis and immunoflorecent microscope. ResultsMSCs were successfully isolated and characterized. The MSCs transfected with the pEGFP-N1 plasmid expressed GFP both in mRNA and protein levels while cells transfected with empty vector did not. ConclusionThe results suggested that this engineered cell line will be used in the future studies and can easily be traced in vivo.

0 Followers
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective(s): Ex vivo expansion of hematopoitic stem cells is an alternative way to increase umbilical cord blood (UCB)-CD34+ cells for bone marrow transplantation. For this purpose demineralized bone matrix (DBM) and mineralized bone allograft (MBA) as two scaffolds based on bone matrix and stem cell niche, were simultaneously used to enhance the effect of human mesenchymal progenitor cells (MPCs) - unrestricted somatic stem cells (USSCs) - as a feeder layer. Materials and Methods: USSCs were isolated and characterized by morphological and immunological analysis then seeded on both scaffolds as a feeder layer. UCB-CD34(+) were isolated by MACS method and were co-culture expanded by USSC in 3D and 2D environments. After 3 weeks expansion, cells were counted and were assessed by karyotype, flow cytometry, clonogenic activity, and long-term culture-initiating cells (LTC-IC). Results: Co-culture expansion in DBM and MBA was 29.22-fold and 27.77-fold, no significant differences in colony and LTC-IC were obtained. Maximum number of colonies belonged to the day 14 with the 73% CFU-GM (Colony Forming Unit- Granulocyte/Macrophage) in contrast to the day 0 which was BFU-E/CFU-E (Burst/Colony Forming Unit-Erythroid). Flow cytometry indicated that the percentage of CD34+ marker was decreased in USSC co-culture and the highest percentage was observed in simple 2D culture. Conclusion: Because of acid extraction in the DBM production process, mineral materials were removed and the protein background that was more flexible was presented. Therefore these results suggest that USSC-DBM can be a suitable ex vivo mimicry niche by intensifying of surface/volume ratio and supporting the stem cell differentiation and expansion.
    Iranian Journal of Basic Medical Science 10/2013; 16(10):1075-87. · 0.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The regenerative potential of mesenchymal stem cells (MSCs) is impaired by cellular senescence, a multi factorial process that has various functions. However, pathways and molecules involved in senescence have not been fully identified. Lipocalin 2 (Lcn2) has been the subject of intensive research, due to its contribution to many physiological and pathophysiological conditions. The implication of Lcn2 has been reported in many conditions where senescence also occurs. In the present study, we evaluated the role of Lcn2 in the occurrence of senescence in human bone marrow-derived mesenchymal stem cells (hB-MSCs) under oxidative conditions. When hB-MSCs were genetically engineered to over-express Lcn2 (MSC-Lcn2) and exposed to H2O2, the proliferation rate of the cells increased. However, the number of colonies and the number of cells that made up each colony in both MSC-V and MSC-Lcn2 cells decreased compared to those cultivated under normal conditions. Our results revealed that over-expression of recombinant Lcn2 in hB-MSCs decreases senescence induced by H2O2 treatment. Senescent cells were observed in aged hB-MSCs; however, no alteration in the expression level of Lcn2 was detected compared to earlier passages. Finally, a higher amount of Lcn2 protein was detected in the plasma of the elderly than in young people. Our findings suggest that Lcn2 might restore the health and regeneration potential of MSCs by decreasing senescence.
    Cell Stress and Chaperones 01/2014; 19(5). DOI:10.1007/s12192-014-0496-5 · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The capacity of mesenchymal stem cells (MSCs) to survive and engraft in the target tissue may lead to promising therapeutic effects. However, the fact that the majority of MSCs die during the first few days following transplantation complicates cell therapy. Hence, it is necessary to strengthen the stem cells to withstand the rigors of the microenvironment to improve the efficacy of cell therapy. In this study, we manipulated MSCs to express a cytoprotective factor, heme oxygenase-1 (HO-1), to address this issue. Full-length cDNA of human HO-1 was isolated and cloned into TOPO vector by TOPO cloning reaction. Then, the construct was ligated to gateway adapted adenovirus expression vector by LR recombination reaction. Afterwards, the recombinant virus expressing HO-1 was produced in appropriate mammalian cell line and used to infect MSCs. The HO-1 engineered MSCs were exposed to hypoxic and oxidative stress conditions fol-lowed by evaluation of the cells' viability and apoptosis. Transient expression of HO-1 was detected within MSCs. It was observed that HO-1 expression could protect MSCs against cell death and the apoptosis triggered by hypoxic and oxidative stress conditions. The MSCs-HO-1 retained their ability to differentiate into adipogenic, chondrogenic, or osteogenic lineages. These findings could be applied as a strategy for prevention of graft cell death in MSCs-based cell therapy and is a good demonstration of how an understanding of cellular stress responses can be used for practical applications.
    Cell Stress and Chaperones 04/2012; DOI:10.1007/s12192-011-0298-y · 2.54 Impact Factor