Improving the Limit of Detection of Nanoscale Sensors by Directed Binding to High-Sensitivity Areas

Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
ACS Nano (Impact Factor: 12.03). 04/2010; 4(4):2167-77. DOI: 10.1021/nn901457f
Source: PubMed

ABSTRACT The revelation of protein-protein interactions is one of the main preoccupations in the field of proteomics. Nanoplasmonics has emerged as an attractive surface-based technique because of its ability to sense protein binding under physiological conditions in a label-free manner. Here, we use short-range ordered holes with a diameter of approximately 150 nm and a depth of approximately 50 nm as a nanoplasmonic template. A approximately 40 nm high cylindrical region of Au is exposed on the walls of the holes only, while the rest of the surface consists of TiO2. Since the sensitivity is confined to the nanometric holes, the use of two different materials for the sensor substrate offers the opportunity to selectively bind proteins to the most sensitive Au regions on the sensor surface. This was realized by applying material-selective poly(ethylene glycol)-based surface chemistry, restricting NeutrAvidin binding to surface-immobilized biotin on the Au areas only. We show that under mass-transport limited conditions (low nM bulk concentrations), the initial time-resolved response of uptake could be increased by a factor of almost 20 compared with the case where proteins were allowed to bind on the entire sensor surface and stress the generic relevance of this concept for nanoscale sensors. In the scope of further optimizing the limit of detection (LOD) of the sensor structure, we present finite-element (FE) simulations to unravel spatially resolved binding rates. These revealed that the binding rates in the holes occur in a highly inhomogeneous manner with highest binding rates observed at the upper rim of the holes and the lowest rates observed at the bottom of the holes. By assuming a plasmonic field distribution with enhanced sensitivity at the Au-TiO2 interface, the FE simulations reproduced the experimental findings qualitatively.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.
    Sensors 01/2015; 15(1):1635-1675. DOI:10.3390/s150101635 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of label-free biosensors with high sensitivity and specificity is of significant interest for medical diagnostics and environmental monitoring, where rapid and real-time detection of antigens, bacteria, viruses, etc., is necessary. Optical resonant devices, which have very high sensitivity resulting from their low optical loss, are uniquely suited to sensing applications. However, previous research efforts in this area have focused on the development of the sensor itself. While device sensitivity is an important feature of a sensor, specificity is an equally, if not more, important performance parameter. Therefore, it is crucial to develop a covalent surface functionalization process, which also maintains the device's sensing capabilities or optical qualities. Here, we demonstrate a facile method to impart specificity to optical microcavities, without adversely impacting their optical performance. In this approach, we selectively functionalize the surface of the silica microtoroids with biotin, using amine-terminated silane coupling agents as linkers. The surface chemistry of these devices is demonstrated using X-ray photoelectron spectroscopy, and fluorescent and optical microscopy. The quality factors of the surface functionalized devices are also characterized to determine the impact of the chemistry methods on the device sensitivity. The resulting devices show uniform surface coverage, with no microstructural damage. This work represents one of the first examples of non-physisorption-based bioconjugation of microtoroidal optical resonators.
    Sensors 10/2010; 10(10):9317-36. DOI:10.3390/s101009317 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We quantify the efficacy of flow-through nanohole sensing, as compared to the established flow-over format, through scaling analysis and numerical simulation. Nanohole arrays represent a growing niche within surface plasmon resonance-based sensing methods, and employing the nanoholes as nanochannels can enhance transport and analytical response. The additional benefit offered by flow-through operation is, however, a complex function of operating parameters and application-specific binding chemistry. Compared here are flow-over sensors and flow-through nanohole array sensors with equivalent sensing area, where the nanohole array sensing area is taken as the inner-walls of the nanoholes. The footprints of the sensors are similar (e.g., a square 20 μm wide flow-over sensor has an equivalent sensing area as a square 30 μm wide array of 300 nm diameter nanoholes with 450 nm periodicity in a 100 nm thick gold film). Considering transport alone, an analysis here shows that given equivalent sensing area and flow rate the flow-through nanohole format enables greatly increased flux of analytes to the sensing surface (e.g., 40-fold for the case of Q = 10 nL/min). Including both transport and binding kinetics, a computational model, validated by experimental data, provides guidelines for performance as a function of binding time constant, analyte diffusivity, and running parameters. For common binding kinetics and analytes, flow-through nanohole arrays offer ∼10-fold improvement in response time, with a maximum of 20-fold improvement for small biomolecules with rapid kinetics.
    Analytical Chemistry 11/2010; 82(24):10015-20. DOI:10.1021/ac101654f · 5.83 Impact Factor