Nguyen, A., Rauch, T. A., Pfeifer, G. P. & Hu, V. W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 24, 3036-3051

Correspondence: Department of Biochemistry and Molecular Biology, George Washington University Medical Center, 2300 Eye St., N.W., Washington, DC 20037, USA.
The FASEB Journal (Impact Factor: 5.04). 04/2010; 24(8):3036-51. DOI: 10.1096/fj.10-154484
Source: PubMed


Autism is currently considered a multigene disorder with epigenetic influences. To investigate the contribution of DNA methylation to autism spectrum disorders, we have recently completed large-scale methylation profiling by CpG island microarray analysis of lymphoblastoid cell lines derived from monozygotic twins discordant for diagnosis of autism and their nonautistic siblings. Methylation profiling revealed many candidate genes differentially methylated between discordant MZ twins as well as between both twins and nonautistic siblings. Bioinformatics analysis of the differentially methylated genes demonstrated enrichment for high-level functions including gene transcription, nervous system development, cell death/survival, and other biological processes implicated in autism. The methylation status of 2 of these candidate genes, BCL-2 and retinoic acid-related orphan receptor alpha (RORA), was further confirmed by bisulfite sequencing and methylation-specific PCR, respectively. Immunohistochemical analyses of tissue arrays containing slices of the cerebellum and frontal cortex of autistic and age- and sex-matched control subjects revealed decreased expression of RORA and BCL-2 proteins in the autistic brain. Our data thus confirm the role of epigenetic regulation of gene expression via differential DNA methylation in idiopathic autism, and furthermore link molecular changes in a peripheral cell model with brain pathobiology in autism.

75 Reads
  • Source
    • "Evidence implicating RORa in autism first came from the finding that RORa levels were reduced in samples taken from autistic patients. In both lymphoblast cell lines derived from affected individuals2 and in the prefrontal cortex and cerebellum of autistic brains1 RORa protein levels were reduced compared to matched controls. Furthermore, transcriptional targets of RORa are involved in the pathways impaired in ASD and some directly regulated genes such as NLGN1 and NTRK2 have been independently implicated in ASD in association studies345. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinoic acid-related orphan receptor alpha gene (RORa) and the microRNA MIR137 have both recently been identified as novel candidate genes for neuropsychiatric disorders. RORa encodes a ligand-dependent orphan nuclear receptor that acts as a transcriptional regulator and miR-137 is a brain enriched small non-coding RNA that interacts with gene transcripts to control protein levels. Given the mounting evidence for RORa in autism spectrum disorders (ASD) and MIR137 in schizophrenia and ASD, we investigated if there was a functional biological relationship between these two genes. Herein, we demonstrate that miR-137 targets the 3'UTR of RORa in a site specific manner. We also provide further support for MIR137 as an autism candidate by showing that a large number of previously implicated autism genes are also putatively targeted by miR-137. This work supports the role of MIR137 as an ASD candidate and demonstrates a direct biological link between these previously unrelated autism candidate genes.
    Scientific Reports 02/2014; 4:3994. DOI:10.1038/srep03994 · 5.58 Impact Factor
  • Source
    • "Such knowledge for addressing this gap is essential for designing possible future therapeutic strategies. DNA methylation is a reversible epigenetic modification [22], which can be targeted by existing Food and Drug Administration (FDA)-approved drugs, including decitabine, which is suggested for use in autism [61,62]. Therefore, investigating the effect of such epigenetic drugs on MeCP2 expression is important. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant MeCP2 expression in brain is associated with neurodevelopmental disorders including autism. In the brain of stressed mouse and autistic human patients, reduced MeCP2 expression is correlated with Mecp2/MECP2 promoter hypermethylation. Altered expression of MeCP2 isoforms (MeCP2E1 and MeCP2E2) is associated with neurological disorders, highlighting the importance of proper regulation of both isoforms. While known regulatory elements (REs) within the MECP2/Mecp2 promoter and intron 1 are involved in MECP2/Mecp2 regulation, Mecp2 isoform-specific regulatory mechanisms are unknown. We hypothesized that DNA methylation at these REs may impact the expression of Mecp2 isoforms. We used a previously characterized in vitro differentiating neural stem cell (NSC) system to investigate the interplay between Mecp2 isoform-specific expression and DNA methylation at the Mecp2 REs. We studied altered expression of Mecp2 isoforms, affected by global DNA demethylation and remethylation, induced by exposure and withdrawal of decitabine (5-Aza-2[prime]-deoxycytidine). Further, we performed correlation analysis between DNA methylation at the Mecp2 REs and the expression of Mecp2 isoforms after decitabine exposure and withdrawal. At different stages of NSC differentiation, Mecp2 isoforms showed reciprocal expression patterns associated with minor, but significant changes in DNA methylation at the Mecp2 REs. Decitabine treatment induced Mecp2e1/MeCP2E1 (but not Mecp2e2) expression at day (D) 2, associated with DNA demethylation at the Mecp2 REs. In contrast, decitabine withdrawal downregulated both Mecp2 isoforms to different extents at D8, without affecting DNA methylation at the Mecp2 REs. NSC cell fate commitment was minimally affected by decitabine under tested conditions. Expression of both isoforms negatively correlated with methylation at specific regions of the Mecp2 promoter, both at D2 and D8. The correlation between intron 1 methylation and Mecp2e1 (but not Mecp2e2) varied depending on the stage of NSC differentiation (D2: negative; D8: positive). Our results show the correlation between the expression of Mecp2 isoforms and DNA methylation in differentiating NSC, providing insights on the potential role of DNA methylation at the Mecp2 REs in Mecp2 isoform-specific expression. The ability of decitabine to induce Mecp2e1/MeCP2E1, but not Mecp2e2 suggests differential sensitivity of Mecp2 isoforms to decitabine and is important for future drug therapies for autism.
    Molecular Autism 11/2013; 4(1):46. DOI:10.1186/2040-2392-4-46 · 5.41 Impact Factor
  • Source
    • "Figure 8 presents a working model that integrates the results of these studies with those of our earlier studies that demonstrated the opposite regulation of RORA by male and female hormones and the regulation of CYP19A1 by RORA [16,38]. In this model, a reduction in RORA expression, which may be induced by increased methylation, which we have demonstrated previously in cell lines from individuals with ASD [12] is expected to lead to a decrease in CYP19A1 (aromatase), which, in turn, would result in the accumulation of its substrate testosterone. The highly active metabolite of testosterone, DHT, can then further suppress RORA expression, exacerbating RORA deficiency. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Our independent cohort studies have consistently shown the reduction of the nuclear receptor RORA (retinoic acid-related orphan receptor-alpha) in lymphoblasts as well as in brain tissues from individuals with autism spectrum disorder (ASD). Moreover, we have found that androgen and estrogen regulate RORA in opposite directions, suggesting that the sexually dimorphic regulation of RORA may contribute to the male bias of ASD, in part by dysregulating aromatase, one of its transcriptional targets. However, the molecular mechanisms through which androgen and estrogen differentially regulate RORA are still unknown. Here we use functional knockdown of hormone receptors and coregulators with small interfering RNA (siRNA) to investigate their involvement in sex hormone regulation of RORA in human neuronal cells. Luciferase assays using a vector containing various RORA promoter constructs were first performed to identify the promoter regions required for inverse regulation of RORA by male and female hormones. Sequential chromatin immunoprecipation methods followed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses of RORA expression in hormone-treated SH-SY5Y cells were then utilized to identify coregulators that associate with hormone receptors on the RORA promoter. siRNA-mediated knockdown of interacting coregulators was performed followed by qRT-PCR analyses to confirm the functional requirement of each coregulator in hormone-regulated RORA expression. Our studies demonstrate the direct involvement of androgen receptor (AR) and estrogen receptor (ER) in the regulation of RORA by male and female hormones, respectively, and that the promoter region between -10055 bp and -2344 bp from the transcription start site of RORA is required for the inverse hormonal regulation. We further show that AR interacts with SUMO1, a reported suppressor of AR transcriptional activity, whereas ERalpha interacts with the coactivator NCOA5 on the RORA promoter. siRNA-mediated knockdown of SUMO1 and NCOA5 attenuate the sex hormone effects on RORA expression. AR and SUMO1 are involved in the suppression RORA expression by androgen, while ERalpha and NCOA5 collaborate in the up-regulation of RORA by estrogen. While this study offers a better understanding of molecular mechanisms involved in sex hormone regulation of RORA, it also reveals another layer of complexity with regard to gene regulation in ASD. Inasmuch as coregulators are capable of interacting with a multitude of transcription factors, aberrant expression of coregulator proteins, as we have seen previously in lymphoblasts from individuals with ASD, may contribute to the polygenic nature of gene dysregulation in ASD.
    Molecular Autism 10/2013; 4(1):39. DOI:10.1186/2040-2392-4-39 · 5.41 Impact Factor
Show more


75 Reads
Available from