Novel Recombinant Mycobacterium bovis BCG, Ovine Atadenovirus, and Modified Vaccinia Virus Ankara Vaccines Combine To Induce Robust Human Immunodeficiency Virus-Specific CD4 and CD8 T-Cell Responses in Rhesus Macaques

MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, United Kingdom.
Journal of Virology (Impact Factor: 4.44). 04/2010; 84(12):5898-908. DOI: 10.1128/JVI.02607-09
Source: PubMed


Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA(401) as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA(401) was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA(401) and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration.

Download full-text


Available from: Joan Joseph, Oct 07, 2015
145 Reads
  • Source
    • "BCG[pWB206] possessed the potential to prime the immune system to a boost with MVA-Gag. This is in agreement with other studies in which HIV antigen-expressing recombinant M. bovis BCG and M. smegmatis were used in heterologous regimens with recombinant viral or protein vaccines as a boost [15], [16], [45]–[52]. Both Gag-specific CD8 and CD4 T cells with a high capacity to produce IFN-γ at levels above those of the individual vaccines were detected after the boost. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 107 CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/106 splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge.
    PLoS ONE 07/2014; 9(7):e103314. DOI:10.1371/journal.pone.0103314 · 3.23 Impact Factor
  • Source
    • "In the past, we designed and constructed immunogen HIVA (HIV clade A), which consists of consensus HIV-1 clade A Gag p24/p17 coupled to a string of partially overlapping CD8+ T-cell epitopes [23]. The HIVA vaccines were tested comprehensively pre-clinically including in non-human primates, whereby MVA.HIVA was less immunogenic in infants than in their mothers [24,25]. Delivered by DNA and MVA, HIVA was extensively tested in adults in the UK and Africa [26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A vaccine to decrease transmission of human immunodeficiency virus type 1 (HIV-1) during breast-feeding would complement efforts to eliminate infant HIV-1 infection by antiretroviral therapy. Relative to adults, infants have distinct immune development, potentially high-risk of transmission when exposed to HIV-1 and rapid progression to AIDS when infected. To date, there have been only three published HIV-1 vaccine trials in infants. We conducted a randomized phase I clinical trial PedVacc 001 assessing the feasibility, safety and immunogenicity of a single dose of candidate vaccine MVA.HIVA administered intramuscularly to 20-week-old infants born to HIV-1-negative mothers in The Gambia. Infants were followed to 9 months of age with assessment of safety, immunogenicity and interference with Expanded Program on Immunization (EPI) vaccines. The trial is the first stage of developing more complex prime-boost vaccination strategies against breast milk transmission of HIV-1. From March to October 2010, 48 infants (24 vaccine and 24 no-treatment) were enrolled with 100% retention. The MVA.HIVA vaccine was safe with no difference in adverse events between vaccinees and untreated infants. Two vaccine recipients (9%) and no controls had positive ex vivo interferon-γ ELISPOT assay responses. Antibody levels elicited to the EPI vaccines, which included diphtheria, tetanus, whole-cell pertussis, hepatitis B virus, Haemophilus influenzae type b and oral poliovirus, reached protective levels for the vast majority and were similar between the two arms. A single low-dose of MVA.HIVA administered to 20-week-old infants in The Gambia was found to be safe and without interference with the induction of protective antibody levels by EPI vaccines, but did not alone induce sufficient HIV-1-specific responses. These data support the use of MVA carrying other transgenes as a boosting vector within more complex prime-boost vaccine strategies against transmission of HIV-1 and/or other infections in this age group. NCT00982579 The Pan African Clinical Trials Registry PACTR2008120000904116.
    PLoS ONE 10/2013; 8(10):e78289. DOI:10.1371/journal.pone.0078289 · 3.23 Impact Factor
  • Source
    • "A previous study of ours showed that a rBCGpan-Gag prime and Gag VLPs boost vaccine regimen is highly immunogenic and induces a broad and polyfunctional central memory T cell response in baboons [10]. Other studies by Hanke et al. have also demonstrated rBCG effectively primes the immune system for a rMVA boost to elicit HIV-specific T cells [6]–[8], [31]. Thus in this study a rBCG vaccine prime and rMVA vaccine boost regimen was chosen to investigate maximum immune responses to rBCG vaccines expressing various HIV proteins. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In previous studies we have shown that a pantothenate auxotroph of Myocbacterium bovis BCG (BCGΔpanCD) expressing HIV-1 subtype C Gag induced Gag-specific immune responses in mice and Chacma baboons after prime-boost immunization in combination with matched rMVA and VLP vaccines respectively. In this study recombinant BCG (rBCG) expressing HIV-1 subtype C reverse transcriptase and a truncated envelope were constructed using both the wild type BCG Pasteur strain as a vector and the pantothenate auxotroph. Mice were primed with rBCG expressing Gag and RT and boosted with a recombinant MVA, expressing a polyprotein of Gag, RT, Tat and Nef (SAAVI MVA-C). Priming with rBCGΔpanCD expressing Gag or RT rather than the wild type rBCG expressing Gag or RT resulted in higher frequencies of total HIV-specific CD8(+) T cells and increased numbers of T cells specific to the subdominant Gag and RT epitopes. Increasing the dose of rBCG from 10(5) cfu to 10(7) cfu also led to an increase in the frequency of responses to subdominant HIV epitopes. A mix of the individual rBCGΔpanCD vaccines expressing either Gag, RT or the truncated Env primed the immune system for a boost with SAAVI MVA-C and generated five-fold higher numbers of HIV-specific IFN-γ-spot forming cells than mice primed with rBCGΔpanCD containing an empty vector control. Priming with the individual rBCGΔpanCD vaccines or the mix and boosting with SAAVI MVA-C also resulted in the generation of HIV-specific CD4(+) and CD8(+) T cells producing IFN-γ and TNF-α and CD4(+) cells producing IL-2. The rBCG vaccines tested in this study were able to prime the immune system for a boost with rMVA expressing matching antigens, inducing robust, HIV-specific T cell responses to both dominant and subdominant epitopes in the individual proteins when used as individual vaccines or in a mix.
    PLoS ONE 09/2013; 8(8):e71601. DOI:10.1371/journal.pone.0071601 · 3.23 Impact Factor
Show more