Identification of methylmercury tolerance gene candidates in Drosophila.

Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA.
Toxicological Sciences (Impact Factor: 4.48). 04/2010; 116(1):225-38. DOI: 10.1093/toxsci/kfq097
Source: PubMed

ABSTRACT Methylmercury (MeHg) is a ubiquitous environmental contaminant that preferentially targets the developing nervous system. Variable outcomes of prenatal MeHg exposure within a population point to a genetic component that regulates MeHg toxicity. We therefore sought to identify fundamental MeHg tolerance genes using the Drosophila model for genetic and molecular dissection of a MeHg tolerance trait. We observe autosomal dominance in a MeHg tolerance trait (development on MeHg food) in both wild-derived and laboratory-selected MeHg-tolerant strains of flies. We performed whole-genome transcript profiling of larval brains of tolerant (laboratory selected) and nontolerant (control) strains in the presence and absence of MeHg stress. Pairwise transcriptome comparisons of four conditions (+/-selection and +/-MeHg) identified a "down-down-up" expression signature, whereby MeHg alone and selection alone resulted in a greater number of downregulated transcripts, and the combination of selection + MeHg resulted in a greater number of upregulated transcripts. Functional annotation cluster analyses showed enrichment for monooxygenases/oxidoreductases, which include cytochrome P450 (CYP) family members. Among the 10 CYPs upregulated with selection + MeHg in tolerant strains, CYP6g1, previously identified as the dichlorodiphenyl trichloroethane resistance allele in flies, was the most highly expressed and responsive to MeHg. Among all the genes, Turandot A (TotA), an immune pathway-regulated humoral response gene, showed the greatest upregulation with selection + MeHg. Neural-specific transgenic overexpression of TotA enhanced MeHg tolerance during pupal development. Identification of TotA and CYP genes as MeHg tolerance genes is an inroad to investigating the conserved function of immune signaling and phase I metabolism pathways in MeHg toxicity and tolerance in higher organisms.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate this lifespan-prolonging effect late in life, we treated flies with mild heat stress (34°C for 2h) 3 times early in life and compared the transcriptomic response in these flies versus non-heat-treated controls 10-51days after the last heat treatment. We found significant transcriptomic changes in the heat-treated flies. Several hsp70 probe sets were up-regulated 1.7-2-fold in the mildly stressed flies weeks after the last heat treatment (P<0.01). This result was unexpected as the major Drosophila heat shock protein, Hsp70, is reported to return to normal levels of expression shortly after heat stress. We conclude that the heat shock response, and Hsp70 in particular, may be central to the heat-induced increase in the average lifespan in flies that are exposed to mild heat stress early in life.
    Experimental gerontology 12/2013; · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methylmercury (MeHg) is a ubiquitous and persistent neurotoxin that poses a risk to human health. While the mechanisms of MeHg toxicity are not fully understood, factors that contribute to susceptibility are even less well known. Studies of human gene polymorphisms have identified a potential role for the multidrug resistance-like protein (MRP/ABCC) family, ATP-dependent transporters, in MeHg susceptibility. MRP transporters have been shown to be important for MeHg excretion in adult mouse models, but their role in moderating MeHg toxicity during development has not been explored. We therefore investigated effects of manipulating expression levels of MRP using a Drosophila development assay. Drosophila MRP (dMRP) is homologous to human MRP1-4 (ABCC1-4), sharing 50% identity and 67% similarity with MRP1. A greater susceptibility to MeHg is seen in dMRP mutant flies, demonstrated by reduced rates of eclosion on MeHg-containing food. Furthermore, targeted knockdown of dMRP expression using GAL4>UAS RNAi methods demonstrates a tissue-specific function for dMRP in gut, Malpighian tubules, and the nervous system in moderating developmental susceptibility to MeHg. Using X-ray synchrotron fluorescence imaging (XFI), these same tissues were also identified as the highest Hg-accumulating tissues in fly larvae. Moreover, higher levels of Hg are seen in dMRP mutant larvae compared to a control strain fed an equivalent dose of MeHg. In sum, these data demonstrate that dMRP expression, both globally and within Hg-targeted organs, has a profound effect on susceptibility to MeHg in developing flies. Our findings point to a potentially novel and specific role for dMRP in neurons in the protection against MeHg. Finally, this experimental system provides a tractable model to evaluate human polymorphic variants of MRP and other gene variants relevant to genetic studies of mercury-exposed populations.
    Toxicological Sciences 05/2014; · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methylmercury (MeHg) is a persistent environmental toxin present in seafood that can compromise the developing nervous system in humans. The effects of MeHg toxicity varies among individuals, despite similar levels of exposure, indicating that genetic differences contribute to MeHg susceptibility. To examine how genetic variation impacts MeHg tolerance, we assessed developmental tolerance to MeHg using the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP). We found significant genetic variation in the effects of MeHg on development, measured by eclosion rate, giving a broad sense heritability of 0.86. To investigate the influence of dietary factors, we measured MeHg toxicity with caffeine supplementation in the DGRP lines. We found that caffeine counteracts the deleterious effects of MeHg in the majority of lines, and there is significant genetic variance in the magnitude of this effect, with a broad sense heritability of 0.80. We performed genome-wide association (GWA) analysis for both traits, and identified candidate genes that fall into several gene ontology categories, with enrichment for genes involved in muscle and neuromuscular development. Overexpression of glutamate-cysteine ligase, a MeHg protective enzyme, in a muscle-specific manner leads to a robust rescue of eclosion of flies reared on MeHg food. Conversely, mutations in kirre, a pivotal myogenic gene identified in our GWA analyses, modulate tolerance to MeHg during development in accordance with kirre expression levels. Finally, we observe disruptions of indirect flight muscle morphogenesis in MeHg-exposed pupae. Since the pathways for muscle development are evolutionarily conserved, it is likely that the effects of MeHg observed in Drosophila can be generalized across phyla, implicating muscle as an additional hitherto unrecognized target for MeHg toxicity. Furthermore, our observations that caffeine can ameliorate the toxic effects of MeHg show that nutritional factors and dietary manipulations may offer protection against the deleterious effects of MeHg exposure.
    PLoS ONE 10/2014; 9(10):e110375. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014