Article

Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH.

Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea.
Cell metabolism (Impact Factor: 17.35). 04/2010; 11(4):331-9. DOI: 10.1016/j.cmet.2010.02.016
Source: PubMed

ABSTRACT Endoplasmic reticulum (ER)-bound transcription factor families are shown to be involved in the control of various metabolic pathways. Here, we report a critical function of ER-bound transcription factor, CREBH, in the regulation of hepatic gluconeogenesis. Expression of CREBH is markedly induced by fasting or in the insulin-resistant state in rodents in a dexamethasone- and PGC-1alpha-dependent manner, which results in the accumulation of active nuclear form of CREBH (CREBH-N). Overexpression of constitutively active CREBH activates transcription of PEPCK-C or G6Pase by binding to its enhancer site that is distinct from the well-characterized CREB/CRTC2 regulatory sequences in vivo. Of interest, knockdown of CREBH in liver significantly reduces blood glucose levels without altering expression of genes involved in the ER stress signaling cascades in mice. These data suggest a crucial role for CREBH in the regulation of hepatic glucose metabolism in mammals.

0 Bookmarks
 · 
182 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The our objective was to investigate the adaptations induced by a low-protein, high-carbohydrate (LPHC) diet in growing rats, which by comparison with the rats fed a control (C) diet at displayed lower fasting glycemia and similar fasting insulinemia, despite impairment in insulin signaling in adipose tissues. In the insulin tolerance test the LPHC rats showed higher rates of glucose disappearance (30%) and higher tolerance to overload of glucose than C rats. The glucose uptake by the soleus muscle, evaluated in vivo by administration of 2-deoxy-[(14)C]glucose, increased by 81%. The phosphoenolpyruvate carboxykinase content and the incorporation of [1-(14)C]pyruvate into glucose was also higher in the slices of liver from the LPHC rats than in those from C rats. The LPHC rats showed increases in l-lactate as well as in other gluconeogenic precursors in the blood. These rats also had a higher hepatic production of glucose, evaluated by in situ perfusion. The data obtained indicate that the main substrates for gluconeogenesis in the LPHC rats are l-lactate and glycerol. Thus, we concluded that the fasting glycemia in the LPHC animals was maintained mainly by increases in the hepatic gluconeogenesis from glycerol and l-lactate, compensating, at least in part, for the higher glucose uptake by the tissues.
    Canadian Journal of Physiology and Pharmacology 04/2014; · 1.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases. © 2014 American Physiological Society. Compr Physiol 4:177-197, 2014.
    Comprehensive Physiology. 01/2014; 4(1):177-97.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The world-wide prevalence of obesity and diabetes has increased sharply during the last two decades. Accordingly, the metabolic phenotyping of genetically engineered mouse models is critical for evaluating the functional roles of target genes in obesity and diabetes, and for developing new therapeutic targets. In this review, we discuss the practical meaning of metabolic phenotyping, the strategy of choosing appropriate tests, and considerations when designing and performing metabolic phenotyping in mice.
    Mammalian Genome 05/2014; · 2.42 Impact Factor