Survival of Patients with Newly Diagnosed Glioblastoma Treated with Radiation and Temozolomide in Research Studies in the United States

Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA. .
Clinical Cancer Research (Impact Factor: 8.19). 04/2010; 16(8):2443-9. DOI: 10.1158/1078-0432.CCR-09-3106
Source: PubMed

ABSTRACT Novel agents are currently combined with radiation and temozolomide (RT + TMZ) in newly diagnosed glioblastoma using overall survival as the primary end point. Results of these phase II studies are typically compared with the phase III European Organization for Research and Treatment of Cancer (EORTC) survival data that resulted in RT + TMZ becoming standard therapy.
The New Approaches to Brain Tumor Therapy (NABTT) Consortium assigned 365 patients with glioblastoma to four single-cohort studies with similar eligibility criteria. Patients received RT + TMZ with talampanel (n = 72), poly-ICLC (n = 97), or cilengitide (n = 112) or RT + TMZ alone with monitoring of CD4 counts (n = 84). Overall survival of those ages 18 to 70 years with glioblastoma was compared with published EORTC data.
NABTT and EORTC patients had comparable performance status and debulking surgery. Median, 12-month, and 24-month survival rates for the EORTC patients (n = 287) and the comparable NABTT patients receiving RT + TMZ and novel agents (n = 244) are 14.6 versus 19.6 months, 61% versus 81%, and 27% versus 37%, respectively. This represents a 37% reduction in odds of death (P < 0.0001) through 2 years of follow-up. NABTT and EORTC patients receiving only RT + TMZ had similar survival.
Newly diagnosed glioblastoma treated recently with RT + TMZ and talampanel, poly-ICLC, or cilengitide had significantly longer survival than similar patients treated with only RT + TMZ accrued internationally from 2000 to 2002. These differences could result from the novel agents or changing patterns of care. Until the reasons for these different survival rates are clarified, comparisons of outcomes from phase II studies with published RT + TMZ survival data should be interpreted with caution.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia is a hallmark of solid tumors including glioblastoma (GBM). Its synergism with Notch signaling promotes progression in different cancers. However, Notch signaling exhibits pleiotropic roles and the existing literature lacks a comprehensive understanding of its perturbations under hypoxia in GBM with respect to all components of the pathway. We identified the key molecular cluster(s) characteristic of the Notch pathway response in hypoxic GBM tumors and gliomaspheres. Expression of Notch and hypoxia genes was evaluated in primary human GBM tissues by q-PCR. Clustering and statistical analyses were applied to identify the combination of hypoxia markers correlated with upregulated Notch pathway components. We found well-segregated tumor-clusters representing high and low HIF-1α/PGK1-expressors which accounted for differential expression of Notch signaling genes. In combination, a five-hypoxia marker set (HIF-1α/PGK1/VEGF/CA9/OPN) was determined as the best predictor for induction of Notch1/Dll1/Hes1/Hes6/Hey1/Hey2. Similar Notch-axis genes were activated in gliomaspheres, but not monolayer cultures, under moderate/severe hypoxia (2%/0.2% O2). Preliminary evidence suggested inverse correlation between patient survival and increased expression of constituents of the hypoxia-Notch gene signature. Together, our findings delineated the Notch-axis maximally associated with hypoxia in resected GBM, which might be prognostically relevant. Its upregulation in hypoxia-exposed gliomaspheres signify them as a better in-vitro model for studying hypoxia-Notch interactions than monolayer cultures.
    PLoS ONE 03/2015; 10(3):e0118201. DOI:10.1371/journal.pone.0118201 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Seminars in Cancer Biology 03/2015; ePub ahead of print. DOI:10.1016/j.semcancer.2015.03.001 · 9.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene therapy offers a multidimensional set of approaches intended to treat and cure glioblastoma (GBM), in combination with the existing standard-of-care treatment (surgery and chemoradiotherapy), by capitalizing on the ability to deliver genes directly to the site of neoplasia to yield antitumoral effects. Four types of gene therapy are currently being investigated for their potential use in treating GBM: (i) suicide gene therapy, which induces the localized generation of cytotoxic compounds; (ii) immunomodulatory gene therapy, which induces or augments an enhanced antitumoral immune response; (iii) tumor-suppressor gene therapy, which induces apoptosis in cancer cells; and (iv) oncolytic virotherapy, which causes the lysis of tumor cells. The delivery of genes to the tumor site is made possible by means of viral and nonviral vectors for direct delivery of therapeutic gene(s), tumor-tropic cell carriers expressing therapeutic gene(s), and "intelligent" carriers designed to increase delivery, specificity, and tumoral toxicity against GBM. These vehicles are used to carry genetic material to the site of pathology, with the expectation that they can provide specific tropism to the desired site while limiting interaction with noncancerous tissue. Encouraging preclinical results using gene therapies for GBM have led to a series of human clinical trials. Although there is limited evidence of a therapeutic benefit to date, a number of clinical trials have convincingly established that different types of gene therapies delivered by various methods appear to be safe. Due to the flexibility of specialized carriers and genetic material, the technology for generating new and more effective therapies already exists. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail:


Available from