Adenosine A(2A) receptor activation protects CD4(+) T lymphocytes against activation-induced cell death

Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
The FASEB Journal (Impact Factor: 5.48). 04/2010; 24(8):2631-40. DOI: 10.1096/fj.10-155192
Source: PubMed

ABSTRACT Activation-induced cell death (AICD) is initiated by T-cell receptor (TCR) restimulation of already activated and expanded peripheral T cells and is mediated through Fas/Fas ligand (FasL) interactions. Adenosine is a purine nucleoside signaling molecule, and its immunomodulatory effects are mediated by 4 G-protein-coupled receptors: A(1), A(2A), A(2B), and A(3). In this study, we investigated the role of A(2A) receptors in regulating CD4(+) T lymphocyte AICD. Our results showed that the selective A(2A) receptor agonist CGS21680 (EC(50)=15.2-32.6 nM) rescued mouse CD4(+) hybridomas and human Jurkat cells from AICD and that this effect was reversed by the selective A(2A) receptor antagonist ZM241385 (EC(50)=2.3 nM). CGS21680 decreased phosphatidylserine exposure on the membrane, as well as the cleavage of caspase-3, caspase-8 and poly(ADP-ribose) polymerase indicating that A(2A) receptor stimulation blocks the extrinsic apoptotic pathway. In addition, CGS21680 attenuated both Fas and FasL mRNA expression. This decrease in FasL expression was associated with decreased activation of the transcription factor systems NF-kappaB, NF-ATp, early growth response (Egr)-1, and Egr-3. The antiapoptotic effect of A(2A) receptor stimulation was mediated by protein kinase A. Together, these results demonstrate that A(2A) receptor activation suppresses the AICD of peripheral T cells.

Download full-text


Available from: Pal Pacher, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some ligand-receptor couples involve spare receptors, which are apparent when a maximal response is achieved with only a small fraction of the receptor population occupied. This situation favours cross-reactions with low-affinity ligands, which may be detrimental for cell signaling. In the case of the adenosine A2A receptors (A2AR), which have an immunosuppressive effect on lymphocytes through cAMP production, the presence of spare A2AR remains to be established. We examined the situation using patients over-expressing lymphocyte A2AR and an agonist-like mAb to A2AR. We found that maximal mAb binding and functional response varied among the patients whereas the dissociation constant and half-maximal effective concentration had similar mean values (0.19 and 0.18 μM, respectively). Lymphocyte A2AR expression was correlated to plasma adenosine level and A2AR occupation but not to A2AR response. These results are consistent with a lack of a reserve of functional A2AR on human lymphocytes as a general rule and suggest that the amount and functional state of the expressed A2AR determine the maximal level of the lymphocyte response to adenosine.
    01/2013; 3:1-5. DOI:10.1016/j.fob.2012.11.004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pannexin (Panx) family of proteins, which is co-expressed with connexins (Cxs) in vertebrates, was found to be a new GJ-forming protein family related to invertebrate innexins. During the past ten years, different studies showed that Panxs mainly form hemichannels in the plasma membrane and mediate paracrine signalling by providing a flux pathway for ions such as Ca²(+), for ATP and perhaps for other compounds, in response to physiological and pathological stimuli. Although the physiological role of Panxs as a hemichannel was questioned, there is increasing evidence that Panx play a role in vasodilatation, initiation of inflammatory responses, ischemic death of neurons, epilepsy and in tumor suppression. Moreover, it is intriguing that Panxs may also function at the endoplasmic reticulum (ER) as intracellular Ca²(+)-leak channel and may be involved in ER-related functions. Although the physiological significance and meaning of such Panx-regulated intracellular Ca²(+) leak requires further exploration, this functional property places Panx at the centre of many physiological and pathophysiological processes, given the fundamental role of intracellular Ca²(+) homeostasis and dynamics in a plethora of physiological processes. In this review, we therefore want to focus on Panx as channels at the plasma membrane and at the ER membranes with a particular emphasis on the potential implications of the latter in intracellular Ca²(+) signalling.
    Cellular Signalling 02/2011; 23(2):305-16. DOI:10.1016/j.cellsig.2010.07.018
  • Source
    Breakthroughs in Melanoma Research, 06/2011; , ISBN: 978-953-307-291-3