Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt

Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, China.
FEMS Microbiology Ecology (Impact Factor: 3.88). 03/2010; 72(3):456-63. DOI: 10.1111/j.1574-6941.2010.00859.x
Source: PubMed

ABSTRACT Cucumber fusarium wilt is a common soil-borne disease. We hypothesize that there is a relationship between the severity of disease and soil microbial ecology. In this work, culturable microbial populations, lipid fatty acid and community-level physiological profiles (CLPP) from rhizosphere soils of four different cucumber cultivars were investigated. Comparatively higher actinomycetes, mycorrhizal colonization and higher ratios of bacteria to fungi were found in the two resistant cultivars compared with the two susceptible cultivars. CLPP analysis showed that catabolic diversity indices were higher in the presence of two resistant cultivars. Phospholipid fatty acid (PLFA) profiles suggested that fungal (18:2omega6,9c) PLFA was enriched in the rhizosphere soils of the two susceptible cultivars, but some bacterial (16:0 and 15:0a) PLFAs were found in a lower relative abundance in these soils. The neutral lipid fatty acid 16:1omega5, which is an indicator of arbuscular mycorrhizal fungi, was enriched in the rhizosphere soils of the two resistant cultivars. All the three methods suggested that plant genotype had a significant impact on the soil microbial community composition and activity, and the differences in the rhizosphere microbial community may result in the differences in the resistance to fusarium wilt.

Download full-text


Available from: Huaiying Yao, Oct 29, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The colonization of rhizosphere by microorganisms is directly associated with bacterial growth, chemotaxis, biofilm formation, and the interaction with host plant root exudates. In this study, the responses of Ralstonia solanacearum to the root exudates from two tobacco cultivars (Hongda, susceptible; K326, resistant) were determined. The results showed that the population of R. solanacearum was much higher in the rhizosphere soil of Hongda than in the rhizosphere soil of K326, resulting in a higher disease index for the Hongda treatments (92.73 %). The attraction of R. solanacearum to Hongda root exudates (HRE) was stronger than the response to K326 root exudates (KRE). Four organic acids, oxalic acid, malic acid, citric acid, and succinic acid, from the root exudates were identified and subsequently evaluated. The amount of oxalic acid from HRE was significantly higher than that from KRE. The results also showed that oxalic acid could both significantly induce the chemotactic response and increase the biofilm biomass of R. solanacearum. Both malic acid and citric acid could significantly increase the chemotaxis ability in vitro and the recruitment of R. solanacearum to tobacco root under gnotobiotic conditions. Overall, these data suggested that the colonization of tobacco rhizosphere by pathogenic bacterial strains was influenced by the organic acids secreted from the roots. The results expand our understanding of the roles of root exudates in plant-microbe interactions and will be useful for screening and applying beneficial bacteria for better control of plant wilt diseases.
    European Journal of Plant Pathology 12/2014; 141(4). DOI:10.1007/s10658-014-0569-4 · 1.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It was hypothesized that disruption of the root–microbiome association creates empty rhizosphere niches that could be filled by both soilborne pathogens and beneficial microbes. The effect of de-coupling root–microbiome associations related to improve soil suppressiveness was investigated in cucumber using the pathogen Fusarium oxysporum f. sp. Cucumerinum (FOC) and its antagonist Bacillus amyloliquefaciens SQR9 (SQR9) system. The root–soil microbiome association of cucumber was disrupted by applying the fungicide carbendazim to the soil, and then FOC or/and its antagonist SQR9 were inoculated in the rhizosphere. In the fungicide treatment, the FOC wilt disease incidence was significantly increased by 13.3 % on average compared to the FOC treatment without fungicide. However, when the fungicide treatment was applied to the soil with SQR9 and FOC, the SQR9 effectively reduced the disease incidence, and improved cucumber plant growth compared to a no fungicide control. These results indicate that de-coupling of root–microbiome associations followed by antagonist inoculation can improve rhizosphere soil suppressiveness, which may help to develop strategies for efficient application of rhizosphere beneficial microbes in agriculture.
    Biology and Fertility of Soils 02/2014; 50(2). DOI:10.1007/s00374-013-0835-1 · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Though phytoremediation has been widely used to restore various contaminated sites, it is still unclear how soil microbial communities respond microecologically to plants and pollutants during the process. In this paper, batch microcosms imitating in situ phytoremediation of petroleum-contaminated wetland by Scirpus triqueter were set up to monitor the influence of plant rhizosphere effect on soil microbes. Palmitic acid, one of the main root exudates of S. triqueter, was added to strengthen rhizosphere effect. Abundances of certain microbial subgroups were quantified by phospholipid fatty acid profiles. Results showed that diesel removal extents were significantly higher in the rhizosphere (57.6 +/-4.2-65.5 +/- 6.9%) than those in bulk soil (27.8 +/-6.5-36.3 +/- 3.2%). In addition, abundances of saturated, monounsaturated, and polyunsaturated fatty acids were significantly higher (P < 0.05) in planted soil than those in the bulk soil. When it was less than 15,000 mg diesel kg soil-1, increasing diesel concentration led to higher abundances of fungi, Gram-positive and Gram-negative bacteria. The addition of palmitic acid amplified the rhizosphere effect on soil microbial populations and diesel removal. Principal component analysis revealed that plant rhizosphere effect was the dominant factor affecting microbial structure. These results provided new insights into plant-microbe-pollutant coactions responsible for diesel degradation, and they were valuable to facilitate phytoremediation of diesel contamination in wetland habitats.
    Environmental Technology 08/2013; 35(1-4):514-20. DOI:10.1080/09593330.2013.836549 · 1.20 Impact Factor