Conference Paper

Analysis of Protein Protein Dimeric Interfaces

Iowa State Univ., Ames
DOI: 10.1109/BIBM.2007.60 Conference: Bioinformatics and Biomedicine, 2007. BIBM 2007. IEEE International Conference on
Source: IEEE Xplore

ABSTRACT We analyzed the structural properties and the local surface environment of surface amino acid residues of proteins using a large, non-redundant dataset of 2383 protein chains in dimeric complexes from PDB. We compared the interface residues and non-interface residues based on six properties: side chain orientation, surface roughness, solid angle, ex value, hydrophobicity and interface cluster size. The results of our analysis show that interface residues have side chains pointing inward; interfaces are rougher, tend to be flat, moderately convex or concave and protrude more relative to non-interface surface residues. Interface residues tend to be surrounded by hydrophobic neighbors and tend to form clusters consisting of three or more interfaces residues. These findings are consistent with previous published studies using much smaller datasets, while allowing for more qualitative conclusions due to our larger dataset. Preliminary results suggest the possibility of using the six the properties to identify putative interface residues.

0 Bookmarks
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to analyze and compare protein-nucleic acid and protein-protein interaction interface has critical importance in understanding the biological function and essential processes occurring in the cells. Since high-resolution three-dimensional (3D) structures of biomacromolecule complexes are available, computational characterizing of the interface geometry become an important research topic in the field of molecular biology. In this study, the interfaces of a set of 180 protein-nucleic acid and protein-protein complexes are computed to understand the principles of their interactions. The weighted Voronoi diagram of the atoms and the Alpha complex has provided an accurate description of the interface atoms. Our method is implemented in the presence and absence of water molecules. A comparison among the three types of interaction interfaces show that RNA-protein complexes have the largest size of an interface. The results show a high correlation coefficient between our method and the PISA server in the presence and absence of water molecules in the Voronoi model and the traditional model based on solvent accessibility and the high validation parameters in comparison to the classical model.
    Computational biology and chemistry 06/2013; 47C:16-23. · 1.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the target protein's neighborhood. We find good agreement of the model on 10 different network properties compared to high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1) PPI networks evolve modular structures, with no need to invoke particular selection pressures. (2) Proteins in cells have on average about 6 degrees of separation, similar to some social networks, such as human-communication and actor networks. (3) Unlike social networks, which have a shrinking diameter (degree of maximum separation) over time, PPI networks are predicted to grow in diameter. (4) The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into biological evolution.
    PLoS ONE 01/2012; 7(6):e39052. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that most of the binding free energy of protein interaction is contributed by a few key hot spot residues. These residues are crucial for understanding the function of proteins and studying their interactions. Experimental hot spots detection methods such as alanine scanning mutagenesis are not applicable on a large scale since they are time consuming and expensive. Therefore, reliable and efficient computational methods for identifying hot spots are greatly desired and urgently required. In this work, we introduce an efficient approach that uses support vector machine (SVM) to predict hot spot residues in protein interfaces. We systematically investigate a wide variety of 62 features from a combination of protein sequence and structure information. Then, to remove redundant and irrelevant features and improve the prediction performance, feature selection is employed using the F-score method. Based on the selected features, nine individual-feature based predictors are developed to identify hot spots using SVMs. Furthermore, a new ensemble classifier, namely APIS (A combined model based on Protrusion Index and Solvent accessibility), is developed to further improve the prediction accuracy. The results on two benchmark datasets, ASEdb and BID, show that this proposed method yields significantly better prediction accuracy than those previously published in the literature. In addition, we also demonstrate the predictive power of our proposed method by modelling two protein complexes: the calmodulin/myosin light chain kinase complex and the heat shock locus gene products U and V complex, which indicate that our method can identify more hot spots in these two complexes compared with other state-of-the-art methods. We have developed an accurate prediction model for hot spot residues, given the structure of a protein complex. A major contribution of this study is to propose several new features based on the protrusion index of amino acid residues, which has been shown to significantly improve the prediction performance of hot spots. Moreover, we identify a compact and useful feature subset that has an important implication for identifying hot spot residues. Our results indicate that these features are more effective than the conventional evolutionary conservation, pairwise residue potentials and other traditional features considered previously, and that the combination of our and traditional features may support the creation of a discriminative feature set for efficient prediction of hot spot residues. The data and source code are available on web site http://home.ustc.edu.cn/~jfxia/hotspot.html.
    BMC Bioinformatics 04/2010; 11:174. · 3.02 Impact Factor

Full-text (2 Sources)

View
50 Downloads
Available from
May 29, 2014