Blockade of Interleukin-17A Results in Reduced Atherosclerosis in Apolipoprotein E-Deficient Mice

Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA.
Circulation (Impact Factor: 14.95). 04/2010; 121(15):1746-55. DOI: 10.1161/CIRCULATIONAHA.109.924886
Source: PubMed

ABSTRACT T cells play an important role during the immune response that accompanies atherosclerosis. To date, the role for interleukin (IL)-17A in atherogenesis is not well defined. Here, we tested the hypothesis that atherosclerosis-prone conditions induce the differentiation of IL-17A-producing T cells, which in turn promote atherosclerosis.
IL-17A was found to be elevated in the plasma and tissues of apolipoprotein E-deficient (Apoe(-/-)) mice. IL-17A-expressing T cells were significantly increased in the aortas, spleen, and lamina propria of aged Apoe(-/-) mice compared with age-matched C57BL/6 mice. IL-17A(+) T cells resided in both adventitia and aortas of aged Apoe(-/-) mice fed a chow diet. Elevated levels of IL-17A(+) T cells were also detected in the aortas of 21-week-old Apoe(-/-) mice fed a Western diet for 15 weeks. IL-17A(+) T cells were characterized as predominantly CD4(+) T helper 17 (Th17) cells and gammadelta(+) T cells. Blockade of IL-17A in Apoe(-/-) mice by use of adenovirus-produced IL-17 receptor A reduced plaque burden in Apoe(-/-) mice fed a Western diet for 15 weeks. In addition, the treatment diminished circulating IL-6 and granulocyte colony-stimulating factor levels and limited CXCL1 expression and macrophage content within the aortas. Conversely, IL-17A treatment of whole aorta isolated from Apoe(-/-) mice promoted aortic CXCL1 expression and monocyte adhesion in an ex vivo adhesion assay.
These results demonstrate that atherosclerosis-prone conditions induce the differentiation of IL-17A-producing T cells. IL-17A plays a proatherogenic inflammatory role during atherogenesis by promoting monocyte/macrophage recruitment into the aortic wall.


Available from: Anca D Dobrian, Feb 20, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Atherosclerosis is a chronic inflammatory disease of the artery wall. Adaptive immunity plays a key role in the pathogenesis of atherosclerosis. Recently, modulation of the immune response against atherosclerotic plaque antigen(s) has attracted attention as a potentially preventive and therapeutic approach. Here, we review a series of studies on immunization with various antigens targeting treatment and prevention of atherosclerosis. Atherosclerosis-related antigens include oxidized low-density lipoprotein (LDL), apolipoprotein B-100 (ApoB-100) and heat shock protein (HSP) 60/65. Accumulating evidence supports the idea that immunization with these antigenic proteins or peptides may reduce atherosclerosis. In this review, we discuss the current status of immunization studies and possible associated mechanisms of atheroprotection.
    Autoimmunity 02/2015; 48(3):1-9. DOI:10.3109/08916934.2014.1003641 · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adaptive immunity is involved in the pathogenesis of atherosclerosis, but the recruitment of T and B lymphocytes to atherosclerotic lesions is not as well studied as that of monocytes. In this review, we summarize the current understanding of the role of lymphocyte subsets in the pathogenesis of atherosclerosis and discuss chemokines and chemokine receptors involved in lymphocyte homing to atherosclerotic lesions. We review evidence for involvement of the chemokines CCL5, CCL19, CCL21, CXCL10, and CXCL16 and macrophage migration inhibitory factor in lymphocyte homing in atherosclerosis. Also, we review the role of their receptors CCR5, CCR6, CCR7, CXCR3, CXCR6, and CXCR2/CXCR4 and the role of the L-selectin in mouse models of atherosclerosis.
    Arteriosclerosis Thrombosis and Vascular Biology 10/2014; 35(1). DOI:10.1161/ATVBAHA.114.303227 · 5.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monocytes, inflammatory cytokines from macrophages, and plasmacytoid dendritic cells, high levels of interferon (IFN)-α and β are generated upon the activation of toll-like receptor-9, and T-cells, especially the ones with Th1 profile, produce pro-inflammatory mediators such as IFN-γ and upregulate macrophages to adhere to the endothelium and migrate into the intima. This review presents an exhaustive account for the role of immune cells in the atherosclerosis.
    04/2015; 3(4):345. DOI:10.12998/wjcc.v3.i4.345