Article

Rapid deglacial and early Holocene expansion of peatlands in Alaska.

Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA 18015, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2010; 107(16):7347-52. DOI: 10.1073/pnas.0911387107
Source: PubMed

ABSTRACT Northern peatlands represent one of the largest biospheric carbon (C) reservoirs; however, the role of peatlands in the global carbon cycle remains intensely debated, owing in part to the paucity of detailed regional datasets and the complexity of the role of climate, ecosystem processes, and environmental factors in controlling peatland C dynamics. Here we used detailed C accumulation data from four peatlands and a compilation of peatland initiation ages across Alaska to examine Holocene peatland dynamics and climate sensitivity. We find that 75% of dated peatlands in Alaska initiated before 8,600 years ago and that early Holocene C accumulation rates were four times higher than the rest of the Holocene. Similar rapid peatland expansion occurred in West Siberia during the Holocene thermal maximum (HTM). Our results suggest that high summer temperature and strong seasonality during the HTM in Alaska might have played a major role in causing the highest rates of C accumulation and peatland expansion. The rapid peatland expansion and C accumulation in these vast regions contributed significantly to the peak of atmospheric methane concentrations in the early Holocene. Furthermore, we find that Alaskan peatlands began expanding much earlier than peatlands in other regions, indicating an important contribution of these peatlands to the pre-Holocene increase in atmospheric methane concentrations.

0 Bookmarks
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An objective of a multiyear monitoring program, sponsored by the US Department of the Interior, Bureau of Ocean Energy Management was to examine temporal and spatial changes in chemical and biological characteristics of the Arctic marine environment resulting from offshore oil exploration and development activities in the development area of the Alaskan Beaufort Sea. To determine if petroleum hydrocarbons from offshore oil operations are entering the Beaufort Sea food web, we measured concentrations of hydrocarbons in tissues of amphipods, Anonyx nugax, sediments, Northstar crude oil, and coastal peat, collected between 1999 and 2006 throughout the development area. Mean concentrations of polycyclic aromatic hydrocarbons (PAH), saturated hydrocarbons (SHC), and sterane and triterpane petroleum biomarkers (StTr) were not significantly different in amphipods near the Northstar oil production facility, before and after it came on line in 2001, and in amphipods from elsewhere in the study area. Forensic analysis of the profiles (relative composition and concentrations) of the 3 hydrocarbon classes revealed that hydrocarbon compositions were different in amphipods, surface sediments where the amphipods were collected, Northstar crude oil, and peat from the deltas of 4 North Slope rivers. Amphipods and sediments contained a mixture of petrogenic, pyrogenic, and biogenic PAH. The SHC in amphipods were dominated by pristane derived from zooplankton, indicating that the SHC were primarily from the amphipod diet of zooplankton detritus. The petroleum biomarker StTr profiles did not resemble those in Northstar crude oil. The forensic analysis revealed that hydrocarbons in amphipod tissues were not from oil production at Northstar. Hydrocarbons in amphipod tissues were primarily from their diet and from river runoff and coastal erosion of natural diagenic and fossil terrestrial materials, including seep oils, kerogens, and peat. Offshore oil and gas exploration and development do not appear to be causing an increase in petroleum hydrocarbon contamination of the Beaufort Sea food web.
    Integrated Environmental Assessment and Management 10/2011; 8(2):301-19.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peatlands have influenced Holocene carbon (C) cycling by storing atmospheric C and releasing methane (CH4). Yet, our understanding of contributions from the world's second largest peatland, the Hudson Bay Lowlands (HBL), Canada, to peat-climate-C-dynamics is constrained by the paucity of dated peat records and regional C-data. Here we examine HBL peatland development in relation to Holocene C-dynamics. We show that peat initiation in the HBL is tightly coupled with glacial isostatic adjustment (GIA) through most of the record, and occurred within suitable climatic conditions for peatland development. HBL peatlands initiated most intensively in the mid-Holocene, when GIA was most rapid and climate was cooler and drier. As the peat mass developed, we estimate that the HBL potentially released 1-7 Tg CH4 per year during the late Holocene. Our results indicate that the HBL currently stores a C-pool of ~30 Pg C and provide support for a peatland-derived CH4 contribution to the late Holocene atmosphere.
    Nature Communications 01/2014; 5:4078. · 10.74 Impact Factor
  • Source
    07/2014;

Full-text (2 Sources)

View
26 Downloads
Available from
Jun 2, 2014