Article

The molecular basis for water taste in Drosophila

Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, CA, USA.
Nature (Impact Factor: 42.35). 04/2010; 465(7294):91-5. DOI: 10.1038/nature09011
Source: PubMed

ABSTRACT The detection of water and the regulation of water intake are essential for animals to maintain proper osmotic homeostasis. Drosophila and other insects have gustatory sensory neurons that mediate the recognition of external water sources, but little is known about the underlying molecular mechanism for water taste detection. Here we identify a member of the degenerin/epithelial sodium channel family, PPK28, as an osmosensitive ion channel that mediates the cellular and behavioural response to water. We use molecular, cellular, calcium imaging and electrophysiological approaches to show that ppk28 is expressed in water-sensing neurons, and that loss of ppk28 abolishes water sensitivity. Moreover, ectopic expression of ppk28 confers water sensitivity to bitter-sensing gustatory neurons in the fly and sensitivity to hypo-osmotic solutions when expressed in heterologous cells. These studies link an osmosensitive ion channel to water taste detection and drinking behaviour, providing the framework for examining the molecular basis for water detection in other animals.

Full-text

Available from: Makoto Hiroi, Aug 13, 2014
0 Followers
 · 
112 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fly pharyngeal sense organs lie at the transition between external and internal nutrient-sensing mechanisms. Here we investigate the function of pharyngeal sweet gustatory receptor neurons, demonstrating that they express a subset of the nine previously identified sweet receptors and respond to stimulation with a panel of sweet compounds. We show that pox-neuro (poxn) mutants lacking taste function in the legs and labial palps have intact pharyngeal sweet taste, which is both necessary and sufficient to drive preferred consumption of sweet compounds by prolonging ingestion. Moreover, flies putatively lacking all sweet taste show little preference for nutritive or non-nutritive sugars in a short-term feeding assay. Together, our data demonstrate that pharyngeal sense organs play an important role in directing sustained consumption of sweet compounds, and suggest that post-ingestive sugar sensing does not effectively drive food choice in a simple short-term feeding paradigm.
    Nature Communications 03/2015; 6:6667. DOI:10.1038/ncomms7667 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In flies and humans, bitter chemicals are known to inhibit sugar detection, but the adaptive role of this inhibition is often overlooked. At best, this inhibition is described as contributing to the rejection of potentially toxic food, but no studies have addressed the relative importance of the direct pathway that involves activating bitter-sensitive cells versus the indirect pathway represented by the inhibition of sugar detection. Using toxins to selectively ablate or inactivate populations of bitter-sensitive cells, we assessed the behavioral responses of flies to sucrose mixed with strychnine (which activates bitter-sensitive cells and inhibits sugar detection) or with l-canavanine (which only activates bitter-sensitive cells). As expected, flies with ablated bitter-sensitive cells failed to detect l-canavanine mixed with sucrose in three different feeding assays (proboscis extension responses, capillary feeding, and two-choice assays). However, such flies were still able to avoid strychnine mixed with sucrose. By means of electrophysiological recordings, we established that bitter molecules differ in their potency to inhibit sucrose detection and that sugar-sensing inhibition affects taste cells on the proboscis and the legs. The optogenetic response of sugar-sensitive cells was not reduced by strychnine, thus suggesting that this inhibition is linked directly to sugar transduction. We postulate that sugar-sensing inhibition represents a mechanism in insects to prevent ingesting harmful substances occurring within mixtures. Copyright © 2015 the authors 0270-6474/15/353990-15$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 03/2015; 35(9):3990-4004. DOI:10.1523/JNEUROSCI.1312-14.2015 · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Humidity is one of the most important factors that determines the geographical distribution and survival of terrestrial animals. The ability to detect variation in humidity is conserved across many species. Here, we established a novel behavioral assay that revealed the thirsty Drosophila exhibits strong hygrotactic behavior, and it can locate water by detecting humidity gradient. In addition, exposure to high levels of moisture was sufficient to elicit proboscis extension reflex behavior in thirsty flies. Furthermore, we found that the third antennal segment was necessary for hygrotactic behavior in thirsty flies, while arista was required for the avoidance of moist air in hydrated flies. These results indicated that two types of hygroreceptor cells exist in Drosophila: one located in the third antennal segment that mediates hygrotactic behavior in thirst status, and the other located in arista which is responsible for the aversive behavior toward moist air in hydration status. Using a neural silencing screen, we demonstrated that synaptic output from the mushroom body α/β surface and posterior neurons was required for both hygrotactic behavior and moisture-aversive behavior.
    PLoS ONE 03/2015; 10(3):e0119162. DOI:10.1371/journal.pone.0119162 · 3.53 Impact Factor