A Steady State of CD4(+) T Cell Memory Maturation and Activation Is Established during Primary Subtype C HIV-1 Infection

AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa.
The Journal of Immunology (Impact Factor: 5.36). 04/2010; 184(9):4926-35. DOI: 10.4049/jimmunol.0903771
Source: PubMed

ABSTRACT The functional integrity of CD4(+) T cells is crucial for well-orchestrated immunity and control of HIV-1 infection, but their selective depletion during infection creates a paradox for understanding a protective response. We used multiparameter flow cytometry to measure activation, memory maturation, and multiple functions of total and Ag-specific CD4(+) T cells in 14 HIV-1- and CMV- coinfected individuals at 3 and 12 mo post HIV-1 infection. Primary HIV-1 infection was characterized by elevated levels of CD38, HLA-DR, and Ki67 in total memory and Gag-specific CD4(+) and CD8(+) T cells. In both HIV-infected and 15 uninfected controls, the frequency of activated cells was uniformly distributed among early differentiated (ED; CD45RO(+)CD27(+)), late differentiated (CD45RO(+)CD27(-)), and fully differentiated effector (CD45RO(-)CD27(-)) memory CD4(+) T cells. In HIV-1-infected individuals, activated CD4(+) T cells significantly correlated with viremia at 3 mo postinfection (r = 0.79, p = 0.0007) and also harbored more gag provirus DNA copies than nonactivated cells (p = 0.04). Moreover, Gag-specific ED CD4(+) T cells inversely associated with plasma viral load (r = -0.87, p < 0.0001). Overall, we show that low copy numbers of gag provirus and plasma RNA copies associated with low CD4 activation as well as accumulation of ED HIV-specific CD4(+) memory. Significant positive correlations between 3 and 12 mo activation and memory events highlighted that a steady state of CD4(+) T cell activation and memory maturation was established during primary infection and that these cells were unlikely to be involved in influencing the course of viremia in the first 12 mo of HIV-1 infection.

Download full-text


Available from: Catherine Riou, Jul 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term non-progressors (LTNP) were identified after 10-15 years of the epidemic, and have been the subject of intense investigation ever since. In a small minority of cases, infection with nef/3'LTR deleted attenuated viral strains allowed control over viral replication. A common feature of LTNP is the readily detected proliferation of CD4 T-cells in vitro, in response to p24. In some cases, the responding CD4 T-cells have cytotoxic effector function and may target conserved p24 epitopes, similar to the CD8 T-cells described below. LTNP may also carry much lower HIV DNA burden in key CD4 subsets, presumably resulting from lower viral replication during primary infection. Some studies, but not others, suggest that LTNP have CD4 T-cells that are relatively resistant to HIV infection in vitro. One possible mechanism may involve up-regulation of the cell cycle regulator p21/waf in CD4 T-cells from LTNP. Delayed progression in Caucasian LTNP is also partly associated with heterozygosity of the Δ32 CCR5 allele, probably through decreased expression of CCR5 co-receptor on CD4 T-cells. However, in approximately half of Caucasian LTNP, two host genotypes, namely HLA-B57 and HLA-B27, are associated with viral control. Immunodominant CD8 T-cells from these individuals target epitopes in p24 that are highly conserved, and escape mutations have significant fitness costs to the virus. Furthermore, recent studies have suggested that these CD8 T-cells from LTNP, but not from HLA-B27 or HLA-B57 progressors, can cross-react with intermediate escape mutations, preventing full escape via compensatory mutations. Humoral immunity appears to play little part in LTNP subjects, since broadly neutralizing antibodies are rare, even amongst slow progressors. Recent genome-wide comparisons between LTNP and progressors have confirmed the HLA-B57, HLA-B27, and delta32 CCR5 allelic associations, plus indicated a role for HLA-C/KIR interactions, but have not revealed any new genotypes so far. Nevertheless, it is hoped that studying the mechanisms of intracellular restriction factors, such as the recently identified SAMHD1, will lead to a better understanding of non-progression.
    Frontiers in Immunology 04/2013; 4:95. DOI:10.3389/fimmu.2013.00095
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activated CD4(+) T cells are more susceptible to HIV infection than resting T cells; the reason for this remains unresolved. Induction of CIITA and subsequent expression of the MHC class II isotype HLA-DR are hallmarks of CD4(+) T cell activation; therefore, we investigated the role of CIITA expression in T cells during HIV infection. CIITA-expressing SupT1 cells display enhanced virion attachment in a gp160/CD4-dependent manner, which results in increased HIV infection, virus release, and T cell depletion. Although increased attachment and infection of T cells correlated with HLA-DR surface expression, Ab blocking, transient expression of HLA-DR without CIITA, and short hairpin RNA knockdown demonstrate that HLA-DR does not directly enhance susceptibility of CIITA-expressing cells to HIV infection. Further analysis of the remaining MHC class II isotypes, HLA-DP and HLA-DQ, MHC class I isotypes, HLA-A, HLA-B, and HLA-C, and the class II Ag presentation genes, invariant chain and HLA-DM, demonstrate that these proteins likely do not contribute to CIITA enhancement of HIV infection. Finally, we demonstrate that in activated primary CD4(+) T cells as HLA-DR/CIITA expression increases there is a corresponding increase in virion attachment. Overall, this work suggests that induction of CIITA expression upon CD4(+) T cell activation contributes to enhanced attachment, infection, virus release, and cell death through an undefined CIITA transcription product that may serve as a new antiviral target.
    The Journal of Immunology 11/2010; 185(11):6480-8. DOI:10.4049/jimmunol.1000830 · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polychromatic flow cytometry results in complex, multivariate datasets. To date, tools for the aggregate analysis of these datasets across multiple specimens grouped by different categorical variables, such as demographic information, have not been optimized. Often, the exploration of such datasets is accomplished by visualization of patterns with pie charts or bar charts, without easy access to statistical comparisons of measurements that comprise multiple components. Here we report on algorithms and a graphical interface we developed for these purposes. In particular, we discuss thresholding necessary for accurate representation of data in pie charts, the implications for display and comparison of normalized versus unnormalized data, and the effects of averaging when samples with significant background noise are present. Finally, we define a statistic for the nonparametric comparison of complex distributions to test for difference between groups of samples based on multi-component measurements. While originally developed to support the analysis of T cell functional profiles, these techniques are amenable to a broad range of datatypes.
    Cytometry Part A 02/2011; 79(2):167-74. DOI:10.1002/cyto.a.21015 · 3.07 Impact Factor