Article

Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses.

Department of Biology, The Pennsylvania State University, USA.
Molecular Biology and Evolution (Impact Factor: 14.31). 04/2010; 27(9):2038-51. DOI: 10.1093/molbev/msq088
Source: PubMed

ABSTRACT Double-stranded (ds) DNA viruses are often described as evolving through long-term codivergent associations with their hosts, a pattern that is expected to be associated with low rates of nucleotide substitution. However, the hypothesis of codivergence between dsDNA viruses and their hosts has rarely been rigorously tested, even though the vast majority of nucleotide substitution rate estimates for dsDNA viruses are based upon this assumption. It is therefore important to estimate the evolutionary rates of dsDNA viruses independent of the assumption of host-virus codivergence. Here, we explore the use of temporally structured sequence data within a Bayesian framework to estimate the evolutionary rates for seven human dsDNA viruses, including variola virus (VARV) (the causative agent of smallpox) and herpes simplex virus-1. Our analyses reveal that although the VARV genome is likely to evolve at a rate of approximately 1 x 10(-5) substitutions/site/year and hence approaching that of many RNA viruses, the evolutionary rates of many other dsDNA viruses remain problematic to estimate. Synthetic data sets were constructed to inform our interpretation of the substitution rates estimated for these dsDNA viruses and the analysis of these demonstrated that given a sequence data set of appropriate length and sampling depth, it is possible to use time-structured analyses to estimate the substitution rates of many dsDNA viruses independently from the assumption of host-virus codivergence. Finally, the discovery that some dsDNA viruses may evolve at rates approaching those of RNA viruses has important implications for our understanding of the long-term evolutionary history and emergence potential of this major group of viruses.

0 Followers
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic analyses of DNA sequences make use of an increasingly complex set of nucleotide substitution models to estimate the divergence between gene sequences. However, there is currently no way to assess the validity of nucleotide substitution models over short time-scales and with limited mutational accumulation. We show that quantifying the decline in the ratio of transitions to transversions (ti/tv) over time provides an in-built measure of mutational saturation and hence of substitution model accuracy. We tested this through detailed phylogenetic analyses of 10 representative virus data sets comprising recently sampled and closely related sequences. In the majority of cases our estimates of ti/tv decrease with time, even under sophisticated time-reversible models of nucleotide substitution. This indicates that high levels of saturation are attained extremely rapidly in viruses, sometimes within decades. In contrast, we did not find any temporal patterns in selection pressures or CG-content over these short time-frames. To validate the temporal trend of ti/tv across a broader taxonomic range, we analyzed a set of 76 different viruses. Again, the estimate of ti/tv scaled negatively with evolutionary time, a trend that was more pronounced for rapidly-evolving RNA viruses than slowly-evolving DNA viruses. Our study shows that commonly used substitution models can underestimate the number of substitutions among closely related sequences, such that the time-scale of viral evolution and emergence may be systematically underestimated. In turn, estimates of ti/tv provide an effective internal control of substitution model performance in viruses because of their high sensitivity to mutational saturation.
    BMC Evolutionary Biology 12/2015; 15(1):312. DOI:10.1186/s12862-015-0312-6 · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The question of the origin of smallpox, one of the major menaces to humankind, is a constant concern for the scientific community. Smallpox is caused by the agent referred to as the variola virus (VARV), which belongs to the genus Orthopoxvirus. In the last century, smallpox was declared eradicated from the human community; however, the mechanisms responsible for the emergence of new dangerous pathogens have yet to be unraveled. Evolutionary analyses of the molecular biological genomic data of various orthopoxviruses, involving a wide range of epidemiological and historical information about smallpox, have made it possible to date the emergence of VARV. Comparisons of the VARV genome to the genomes of the most closely related orthopoxviruses and the examination of the distribution their natural hosts' ranges suggest that VARV emerged 3000 to 4000 years ago in the east of the African continent. The VARV evolution rate has been estimated to be approximately 2 × 10 −6 substitutions/site/year for the central conserved genomic region and 4 × 10 −6 substitutions/site/year for the synonymous substitutions in the genome. Presumably, the introduction of camels to Africa and the concurrent changes to the climate were the particular factors that triggered the divergent evolution of a cowpox-like ancestral virus and thereby led to the emergence of VARV.
    Viruses 01/2015; 7(3):1100-1112. DOI:10.3390/v7031100 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the genetic basis of viral adaptation to taxonomically diverse groups of host species inhabiting different eco-climatic zones is crucial for the discovery of factors underpinning the successful establishment of these infectious pathogens in new hosts/environments. To gain insights into the dynamics of nonsynonymous (dN) and synonymous substitutions (dS) and the ratio between the two (ω = dN/dS), we analyzed the complete nucleotide coding sequence data of the M segment, which encodes glycoproteins of two negative-sense RNA viruses, Akabane virus (AKV) and Schmallenberg virus (SBV) that belong to the same serogroup. While AKV is relatively older and has been circulating in ruminant populations since 1970s, SBV was first reported in 2011. The ω was estimated to be 1.67 and 0.09 for SBV and AKV, respectively, and the estimated mutation rate of SBV is at least 25 times higher than that of AKV. Given the different evolutionary stages of the two viruses, most of the slightly deleterious mutations were likely purged out or kept in low frequency in the AKV genome, whereas positive selection together with the accumulation of slightly deleterious mutations might contribute to such an inflated mutation rate of SBV. The evolutionary distance (d) is nonlinearly and negatively correlated with ω, but is positively correlated with dN and dS. Collectively, the different patterns in ω, dN, dS, and d between AKV and SBV identified in this study provide empirical evidence for a time-dependent selection pressure. Copyright © 2015. Published by Elsevier B.V.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 03/2015; 32. DOI:10.1016/j.meegid.2015.03.019 · 3.26 Impact Factor

Full-text (2 Sources)

Download
35 Downloads
Available from
May 29, 2014