Article

The case of botulinum toxin in milk: experimental data.

Toxinology Group, Spiez Laboratory, 3700 Spiez, Switzerland.
Applied and Environmental Microbiology (Impact Factor: 3.95). 04/2010; 76(10):3293-300. DOI: 10.1128/AEM.02937-09
Source: PubMed

ABSTRACT Botulinum neurotoxin (BoNT) is the most toxic substance known to man and the causative agent of botulism. Due to its high toxicity and the availability of the producing organism Clostridium botulinum, BoNT is regarded as a potential biological warfare agent. Because of the mild pasteurization process, as well as rapid product distribution and consumption, the milk supply chain has long been considered a potential target of a bioterrorist attack. Since, to our knowledge, no empirical data on the inactivation of BoNT in milk during pasteurization are available at this time, we investigated the activities of BoNT type A (BoNT/A) and BoNT/B, as well as their respective complexes, during a laboratory-scale pasteurization process. When we monitored milk alkaline phosphatase activity, which is an industry-accepted parameter of successfully completed pasteurization, our method proved comparable to the industrial process. After heating raw milk spiked with a set amount of BoNT/A or BoNT/B or one of their respective complexes, the structural integrity of the toxin was determined by enzyme-linked immunosorbent assay (ELISA) and its functional activity by mouse bioassay. We demonstrated that standard pasteurization at 72 degrees C for 15 s inactivates at least 99.99% of BoNT/A and BoNT/B and at least 99.5% of their respective complexes. Our results suggest that if BoNTs or their complexes were deliberately released into the milk supply chain, standard pasteurization conditions would reduce their activity much more dramatically than originally anticipated and thus lower the threat level of the widely discussed "BoNT in milk" scenario.

0 Followers
 · 
238 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed a system for the detection of botulinum neurotoxin (BoNT) type A based on a highly sensitive luciferase reporter assay automated by the centrifugal microfluidic LabDisk platform. The assay is based on the detection of BoNT's proteolytic activity and generation of a bioluminescent signal due to the release of firefly luciferase, pre-bound to microbeads via a cleavable peptide linker, in response to BoNT. It detected purified BoNT, BoNT in complex with neurotoxin associated proteins, and the recombinant enzymatic BoNT light chain in buffer and whole milk in the concentration range of 8 pM to 6 nM with an analytical sensitivity and limit of detection of 10–39 pM and 6–14 pM, respectively. The intra-disk, intra-day and inter-day variability were in the range of 1–13%, 1–7% and 10–13%, respectively. The developed assay correlated well with the conventional microwell plate assay. It is superior to the conventional BoNT assays in terms of portability, cost-effectiveness, lesser sample requirement, lesser number of steps and detection of a broad spectrum of BoNT serotypes and subtypes. It takes only 30 minutes, which is ideal for point-of-need BoNT detection in the case of security threats and food monitoring.
    RSC Advances 09/2013; 3(44):22046-22052. DOI:10.1039/C3RA44482A · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The standard method for the detection of botulinum neurotoxin is currently the mouse bioassay which is considered to be the most reliable method for the detection of the active form of this toxin. Despite this it is a time-consuming and expensive assay to run and as such many alternative assays have recently been proposed. Herein we report the development of two electrochemical assays for the detection of active botulinum neurotoxin in a pharmaceutical sample. Gold electrodes were modified with self-assembled monolayers of the SNARE protein SNAP-25 which is selectively cleaved by active botulinum neurotoxin A. Cyclic voltammetry and electrochemical impedance spectroscopy were performed on the modified working electrodes to observe changes to the layer on addition of the toxin. Both methods were able to distinguish the difference between the presence of the active toxin and a placebo containing the excipients of the pharmaceutical product. The electrochemical impedance spectroscopy assay also allowed for detection of the active toxin at concentrations as low as 25 fg/ml, with results being obtained in under an hour outperforming the mouse bioassay.
    10/2014; 2:12-15. DOI:10.1016/j.sbsr.2014.08.002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sensitive detection of highly toxic botulinum neurotoxin (BoNT) from Clostridium botulinum is of critical importance because it causes human illnesses if foodborne, introduced in wounds, and as an iatrogenic substance. Moreover, it has been recently considered a possible biological warfare agent. Over the past decade, significant progress has been made in BoNT detection technologies, including mouse lethality assays, enzyme-linked immunosorbent assays, endopeptidase assays, and by mass spectrometry. Critical assay requirements, including rapid assay, active toxin detection, sensitive and accurate detection, still remain challenging. Here, we present a novel method to detect active BoNTs using a Glyco-quantitative polymerase chain-reaction (qPCR) approach. Sialyllactose, which interacts with the binding-domain of BoNTs, is incorporated into a sialyllactose-DNA conjugate as a binding-probe for active BoNT and recovered through BoNT-immunoprecipitation. Glyco-qPCR analysis of the bound sialyllactose-DNA is then used to detect low attomolar concentrations multiple serotypes of BoNT and attomolar to femtomolar concentrations of BoNT in honey, the most common foodborne source of infant botulism.
    Analytical Chemistry 02/2014; 86(5). DOI:10.1021/ac500262d · 5.83 Impact Factor