A novel peripherin gene (PRPH) mutation identified in one sporadic amyotrophic lateral sclerosis patient

Department Medical Sciences, Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont, Novara, Italy.
Neurobiology of aging (Impact Factor: 4.85). 04/2010; 32(3):552.e1-6. DOI: 10.1016/j.neurobiolaging.2010.02.011
Source: PubMed

ABSTRACT Motor neurons in amyotrophic lateral sclerosis (ALS) are characterized by the presence of inclusion bodies composed of intermediate filament (IF) proteins. Peripherin protein is as components of these inclusions and rare mutations in peripherin gene (PRPH) were identified in sporadic ALS cases. The aim of this study was to further define the spectrum of PRPH mutations in a cohort of 122 Italian ALS patients. We screened the coding sequence, the exon/intron boundaries, and the 5'-3' un-translated regions (UTRs) in 122 ALS patients. Eighteen sequence variations were detected. Seven variants were not identified in a panel of at least 245 matched controls, including 2 missense variations, namely p.R133P and p.D141Y, each identified in one heterozygous patient. p.R133P was newly identified whereas p.D141Y was previously described in one homozygous sporadic ALS patient. These 2 variants were predicted to have a deleterious effect on protein structure or function. This work contributes to determine the role of PRPH gene variants in ALS. Further studies are necessary to define the mechanisms through which the mutant peripherin could cause ALS phenotype.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracellular proteinaceous inclusions are well-documented hallmarks of the fatal motor neuron disorder amyotrophic lateral sclerosis (ALS). The pathological significance of these inclusions remains unknown. Peripherin, a type III intermediate filament protein, is upregulated in ALS and identified as a component within different types of ALS inclusions. The formation of these inclusions may be associated with abnormal peripherin splicing, whereby an increase in mRNA retaining introns 3 and 4 (Per-3,4) leads to the generation of an aggregation-prone isoform, Per-28. During the course of evaluating peripherin filament assembly in SW-13 cells, we identified that expression of both Per-3,4 and Per-28 transcripts formed inclusions with categorically distinct morphology: Per-3,4 was associated with cytoplasmic condensed/bundled filaments, small inclusions (<10μM), or large inclusions (≥10μM); while Per-28 was associated with punctate inclusions in the nucleus and/or cytoplasm. We found temporal and spatial changes in inclusion morphology between 12-48hr post-transfected cells, which were accompanied by unique immunofluorescent and biochemical changes of other ALS-relevant proteins, including TDP-43 and ubiquitin. Despite mild cytotoxicity associated with peripherin transfection, Per-3,4 and Per-28 expression increased cell viability during H2O2-mediated oxidative stress in BE(2)-M17 neuroblastoma cells. Taken together, this study shows that ALS-associated peripherin isoforms form dynamic cytoplasmic and intranuclear inclusions, effect changes in local endogenous protein expression, and afford cytoprotection against oxidative stress. These findings may have important relevance to understanding the pathophysiological role of inclusions in ALS.
    Experimental Neurology 06/2014; 261. DOI:10.1016/j.expneurol.2014.05.024 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown pathophysiological mechanisms. Profilin 1 gene (PFN1) has been identified as a causative gene, which accounts for 1% to 2% of familial ALS. In this study, we investigated the mutation spectrum of PFN1 in Chinese patients with ALS. A total of 550 ALS patients (including 540 sporadic ALS [SALS] and 10 familial ALS) from the Department of Neurology, West China Hospital of Sichuan University, were recruited for the study. From the same region, 545 healthy control individuals (HC) were recruited as a control group. The encoding regions of the PFN1 gene were screened by direct sequencing. Novel candidate mutations or variations were confirmed by polymerase chain reaction-restriction fragment length polymorphism. A novel nonsynonymous p.R136W mutation was identified in an early-onset SALS female patient. A novel synonymous mutation p.L88L detected in a late-onset SALS female patient was considered nonpathogenic, as it was also detected in a control subject. No mutations were found in 10 familial ALS patients. Moreover, we found a significant difference in the genotype distribution of reported rs13204 (p.L112L) between SALS patients and HC (p = 0.0030). The frequency of minor allele 'T' of rs13204 in the SALS group was significantly lower than that in HC (p = 0.0040, OR = 0.7270, 95% CI = 0.5848-0.9039). Our results suggest that PFN1 mutation is an uncommon cause of ALS in the Han Chinese population. The SNP rs13204 of the PFN1 gene may have an important function in ALS development. The phenotype of ALS patients with mutantPFN1 gene varies among different genetic backgrounds.
    Neurobiology of aging 02/2013; 34(7). DOI:10.1016/j.neurobiolaging.2013.01.013 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peripherin, a neuronal intermediate filament protein implicated in neurodegenerative disease, coexists with the neurofilament triplet proteins [neurofilament light (NFL), medium (NFM), and heavy (NFH) chain] but has an unknown function. The earlier peak expression of peripherin than the triplet during brain development and its ability to form homopolymers, unlike the triplet, which are obligate heteropolymers, have supported a widely held view that peripherin and neurofilament triplets form separate filament systems. However, here, we demonstrate that, despite a postnatal decline in expression, peripherin is as abundant as the triplet in the adult PNS and exists in a relatively fixed stoichiometry with these subunits. Peripherin exhibits a distribution pattern identical to those of triplet proteins in sciatic axons and colocalizes with NFL on single neurofilaments by immunogold electron microscopy. Peripherin also coassembles into a single network of filaments containing NFL, NFM, and NFH with and without α-internexin in quadruple- or quintuple-transfected SW13vim(-) cells. Genetically deleting NFL in mice dramatically reduces peripherin content in sciatic axons. Moreover, peripherin mutations has been shown to disrupt the neurofilament network in transfected SW13vim(-) cells. These data show that peripherin and the neurofilament proteins are functionally interdependent. The results strongly support the view that, rather than forming an independent structure, peripherin is a subunit of neurofilaments in the adult PNS. Our findings provide a basis for its close relationship with neurofilaments in PNS diseases associated with neurofilament accumulation.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 06/2012; 32(25):8501-8. DOI:10.1523/JNEUROSCI.1081-12.2012 · 6.75 Impact Factor