Article

The ameliorating effect of the extract of the flower of Prunella vulgaris var. lilacina on drug-induced memory impairments in mice

Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association (Impact Factor: 2.61). 03/2010; 48(6):1671-6. DOI: 10.1016/j.fct.2010.03.042
Source: PubMed

ABSTRACT Prunella vulgaris var. lilacina is widely distributed in Korea, Japan, China, and Europe, and its flowers are used to treat inflammation in traditional Chinese medicine. In the present study, we studied the effects of the ethanolic extract of the flower of P. vulgaris var. lilacina (EEPV) on drug-induced learning and memory impairment using the passive avoidance, the Y-maze, and the Morris water maze tasks in mice. EEPV (25 or 50 mg/kg, p.o.) significantly ameliorated scopolamine-induced cognitive impairments in the passive avoidance and Y-maze tasks (P<0.05). In the Morris water maze task, EEPV (25 mg/kg, p.o.) significantly shortened escape latencies in training-trials. Furthermore, swimming times within the target zone during the probe-trial were significantly increased as compared with scopolamine-treated mice (P<0.05). In addition, the reduced latency induced by MK-801 treatment in the passive avoidance task was ameliorated by EEPV (25 mg/kg, p.o.) (P<0.05). Additionally, the ameliorating effect of EEPV on scopolamine-induced memory dysfunction was antagonized by a sub-effective dose of MK-801. These results suggest that EEPV would be useful for treating cognitive impairments induced by cholinergic dysfunction, and that it exerts its effects via NMDA receptor signaling.

0 Followers
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we investigated the effect of ethanolic extract of the seed of Zizyphus jujuba var. spinosa (EEZS) on cholinergic blockade-induced memory impairment in mice. Male ICR mice were treated with EEZS. The behavioral tests were conducted using the passive avoidance, the Y-maze, and the Morris water maze tasks. EEZS (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in our present behavioral tasks without changes of locomotor activity. The ameliorating effect of EEZS on scopolamine-induced memory impairment was significantly reversed by a sub-effective dose of MK-801 (0.0125 mg/kg, s.c.). In addition, single administration of EEZS in normal naïve mouse enhanced latency time in the passive avoidance task. Western blot analysis was employed to confirm the mechanism of memory-ameliorating effect of EEZS. Administration of EEZS (200 mg/kg) increased the level of memory-related signaling molecules, including phosphorylation of extracellular signal-regulated kinase or cAMP response element-binding protein in the hippocampal region. Also, the time-dependent expression level of brain-derived neurotrophic factor by the administration of EEZS was markedly increased from 3 to 9 h. These results suggest that EEZS has memory-ameliorating effect on scopolamine-induced cognitive impairment, which is mediated by the enhancement of the cholinergic neurotransmitter system, in part, via NMDA receptor signaling, and that EEZS would be useful agent against cognitive dysfunction such as Alzheimer's disease.
    Biomolecules and Therapeutics 07/2013; 21(4):299-306. DOI:10.4062/biomolther.2013.043 · 0.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prunella vulgaris var. lilacina is widely distributed in Korea, Japan, China, and Europe, and it has been traditionally used to treat inflammation or hypertension. In the present study, we investigated the effects of the ethanolic extract of the spikes of Prunella vulgaris var. lilacina (EEPV) on dizocilpine (MK-801)-induced schizophrenia-like phenotype behaviors such as the disruption of prepulse inhibition and attention deficits in mice. We also determined the effect of EEPV on MK-801-induced alterations in phosphorylated extracellular signal-regulated kinase, phosphorylated protein kinase B, phospho-glycogen synthase kinase 3-β, and phosphorylated cAMP response element-binding protein levels in the cortex and hippocampus of mice. MK-801-induced prepulse inhibition deficits were ameliorated by the administration of EEPV, as shown in the acoustic startle response test. Furthermore, EEPV attenuated the MK-801-induced attention deficits in the water finding test. We also found that EEPV attenuated the increased phosphorylated extracellular signal-regulated kinase, phosphorylated protein kinase B, or phospho-glycogen synthase kinase 3-β levels induced by MK-801 in the cortex but not in the hippocampus. These results suggest that EEPV could be useful for treating schizophrenia because EEPV ameliorates prepulse inhibition disruption and attention deficits induced by MK-801. Copyright © 2013 John Wiley & Sons, Ltd.
    Phytotherapy Research 12/2013; 27(12). DOI:10.1002/ptr.4929 · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the 17th century Spica Prunella has been used as a medicinal herb. Dried and pulverized Spica Prunella samples were extracted and used in these experiments. In this study, the effects of Spica Prunella extract (SPE) on RANKL (receptor activator of nuclear factor κB ligand)-induced osteoclastogenesis were examined. Actin ring formation, a typical marker of osteoclastogenesis, was inhibited by SPE without any toxicity. There was also a marked inhibition in the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in bone marrow-derived monocytes (BMMs). SPE also suppressed phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinases (ERK) both of which are signals of the mitogen-activated protein kinases (MAPKs) signaling pathway. Additionally, SPE inhibited IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) signaling pathway, which is an important factor in osteoclastogenesis. These results indicate that SPE might suppress osteoclast differentiation by inhibiting the phosphorylation of JNK and ERK in MAPK and NF-κB signaling pathways which act as messengers in the RANKL-induced osteoclast differentiation pathway. This means that SPE could potentially have great therapeutic usage in treating bone erosive diseases such as rheumatoid arthritis or in preventing metastasis associated with bone loss.
    Food science and biotechnology 12/2013; 22(6). DOI:10.1007/s10068-013-0268-5 · 0.66 Impact Factor